Hoffman–Singleton graph

From Wikipedia, the free encyclopedia
(Redirected from Hoffman-Singleton graph)
Hoffman–Singleton graph
Named afterAlan J. Hoffman
Robert R. Singleton
Vertices50
Edges175
Radius2
Diameter2[1]
Girth5[1]
Automorphisms252,000
(PSU(3,52):2)[2]
Chromatic number4
Chromatic index7[3]
Genus29[4]
PropertiesStrongly regular
Symmetric
Hamiltonian
Integral
Cage
Moore graph
Table of graphs and parameters
The Hoffman–Singleton graph. The subgraph of blue edges is a sum of ten disjoint pentagons.

In the mathematical field of graph theory, the Hoffman–Singleton graph is a 7-regular undirected graph with 50 vertices and 175 edges. It is the unique strongly regular graph with parameters (50,7,0,1).[5] It was constructed by Alan Hoffman and Robert Singleton while trying to classify all Moore graphs, and is the highest-order Moore graph known to exist.[6] Since it is a Moore graph where each vertex has degree 7, and the girth is 5, it is a (7,5)-cage.

Construction[edit]

Here are some constructions of the Hoffman–Singleton graph.[7]

Construction from pentagons and pentagrams[edit]

Take five pentagons Ph and five pentagrams Qi . Join vertex j of Ph to vertex h·i+j of Qi. (All indices are modulo 5.)[7]

Construction from PG(3,2)[edit]

Take a Fano plane on seven elements, such as {abc, ade, afg, bef, bdg, cdf, ceg} and apply all 2520 even permutations on the 7-set abcdefg. Canonicalize each such Fano plane (e.g. by reducing to lexicographic order) and discard duplicates. Exactly 15 Fano planes remain. Each 3-set (triplet) of the set abcdefg is present in exactly 3 Fano planes. The incidence between the 35 triplets and 15 Fano planes induces PG(3,2), with 15 points and 35 lines. To make the Hoffman-Singleton graph, create a graph vertex for each of the 15 Fano planes and 35 triplets. Connect each Fano plane to its 7 triplets, like a Levi graph, and also connect disjoint triplets to each other like the odd graph O(4).

A very similar construction from PG(3,2) is used to build the Higman–Sims graph, which has the Hoffman-Singleton graph as a subgraph.

Construction on a groupoid/magma[edit]

Let be the set . Define a binary operation on such that for each and in , . Then the Hoffman-Singleton graph has vertices and that there exists an edge between and whenever for some . [8] (Although the authors use the word "groupoid", it is in the sense of a binary function or magma, not in the category-theoretic sense. Also note there is a typo in the formula in the paper: the paper has in the last term, but that does not produce the Hoffman-Singleton graph. It should instead be as written here.[9])

Algebraic properties[edit]

The automorphism group of the Hoffman–Singleton graph is a group of order 252,000 isomorphic to PΣU(3,52) the semidirect product of the projective special unitary group PSU(3,52) with the cyclic group of order 2 generated by the Frobenius automorphism. It acts transitively on the vertices, on the edges and on the arcs of the graph. Therefore, the Hoffman–Singleton graph is a symmetric graph. As a permutation group on 50 symbols, it can be generated by the following two permutations applied recursively[10]

and

The stabilizer of a vertex of the graph is isomorphic to the symmetric group S7 on 7 letters. The setwise stabilizer of an edge is isomorphic to Aut(A6)=A6.22, where A6 is the alternating group on 6 letters. Both of the two types of stabilizers are maximal subgroups of the whole automorphism group of the Hoffman–Singleton graph.

The characteristic polynomial of the Hoffman–Singleton graph is equal to . Therefore, the Hoffman–Singleton graph is an integral graph: its spectrum consists entirely of integers.

The Hoffman-Singleton graph has exactly 100 independent sets of size 15 each. Each independent set is disjoint from exactly 7 other independent sets. The 100-vertex graph that connects disjoint independent sets can be partitioned into two 50-vertex subgraphs, each of which is isomorphic to the Hoffman-Singleton graph, in an unusual case of self-replicating + multiplying behavior.

See also[edit]

Notes[edit]

  1. ^ a b Weisstein, Eric W. "Hoffman-Singleton Graph". MathWorld.
  2. ^ Hafner, P. R. "The Hoffman-Singleton Graph and Its Automorphisms." J. Algebraic Combin. 18, 7–12, 2003.
  3. ^ Royle, G. "Re: What is the Edge Chromatic Number of Hoffman-Singleton?" GRAPHNET@listserv.nodak.edu posting. Sept. 28, 2004. [1]
  4. ^ Conder, M.D.E.; Stokes, K.: "Minimum genus embeddings of the Hoffman-Singleton graph", preprint, August 2014.
  5. ^ Brouwer, Andries E., Hoffman-Singleton graph.
  6. ^ Hoffman, Alan J.; Singleton, Robert R. (1960), "Moore graphs with diameter 2 and 3" (PDF), IBM Journal of Research and Development, 5 (4): 497–504, doi:10.1147/rd.45.0497, MR 0140437.
  7. ^ a b Baez, John (February 1, 2016), "Hoffman–Singleton Graph", Visual Insight, American Mathematical Society
  8. ^ Chishwashwa, N.; Faber, V.; Streib, N. (2022). "Digraph Networks and Groupoids". arXiv:2208.10537 [math.CO].
  9. ^ Harder, Jannis, Messages on Mastodon
  10. ^ These generators published by GAP. There are of course many other generators for this group.

References[edit]