Sangeeta N. Bhatia

From Wikipedia, the free encyclopedia

Sangeeta N. Bhatia
Bhatia in 2023 at MIT
Born (1968-06-24) June 24, 1968 (age 55)
NationalityAmerican
CitizenshipAmerican
Alma materBrown University (B.S.)
Massachusetts Institute of Technology (M.S., Ph.D.)
Harvard Medical School (M.D.)
Known forNanotechnology for tissue repair and regeneration
AwardsPackard Fellowship (1999–2004)
Howard Hughes Medical Institute investigator (2008)
Lemelson–MIT Prize
Heinz Award (2015)
Othmer Gold Medal (2019)
Scientific career
FieldsNanotechnology, Tissue engineering
InstitutionsMassachusetts General Hospital
University of California, San Diego (1998–2005)
Massachusetts Institute of Technology (2005– )
Academic advisorsMehmet Toner
External videos
video icon “This tiny particle could roam your body to find tumors”, Sangeeta Bhatia, TED Talks Live, November 2015
video icon “Sangeeta Bhatia, 2014 Lemelson-MIT Prize Winner“, January 29, 2015

Sangeeta N. Bhatia (born 1968) is an American biological engineer and the John J. and Dorothy Wilson Professor at MIT’s Institute for Medical Engineering and Science and Electrical Engineering and Computer Science (EECS) at the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts, United States. Bhatia's research investigates applications of micro- and nano-technology for tissue repair and regeneration. She applies ideas from computer technology and engineering to the design of miniaturized biomedical tools for the study and treatment of diseases, in particular liver disease, hepatitis, malaria and cancer.[1]

In 2003, she was named by the MIT Technology Review as one of the top 100 innovators in the world under the age of 35.[2][3] She was also named a "Scientist to Watch" by The Scientist in 2006.[4] She has received multiple awards and has been elected to the National Academy of Sciences,[5] the National Academy of Engineering,[6] the National Academy of Medicine,[7] and the National Academy of Inventors.[8]

Bhatia's dissertation became the basis for Microfabrication in tissue engineering and bioartificial organs (1999).[9] Bhatia co-authored the first undergraduate textbook on tissue engineering, Tissue engineering (2004), written for senior-level and first-year graduate courses with Bernhard Palsson.[10] She was a co-editor of Microdevices in Biology and Medicine (2009)[11] and Biosensing: International Research and Development (2005).[12]

Early life and education[edit]

Bhatia's parents emigrated from India to Boston, Massachusetts; her father was an engineer and her mother was one of the first women to receive an MBA in India. Bhatia was motivated to become an engineer after her 10th grade biology class and a trip with her father into an MIT lab to see a demonstration of an ultrasound machine for cancer treatment.[13]

Bhatia studied bioengineering at Brown University where she joined a research group studying artificial organs which convinced her to pursue graduate study the field.[14] After graduating with honors in 1990,[15] Bhatia was initially rejected from the MD-PhD program run by the Harvard-MIT Division of Health Sciences and Technology (HST) but was accepted into the Mechanical Engineering masters program. She was later accepted to the HST MD-PhD program where she was advised by Mehmet Toner and Martin Yarmush. She received a PhD in 1997 and an MD in 1999, and completed postdoctoral training at Massachusetts General Hospital.[13][15]

Career[edit]

Bhatia joined the faculty at the University of California, San Diego (UCSD) in 1998.[16] As an assistant professor, Bhatia was awarded a five-year Packard Fellowship for Science and Engineering from the David and Lucile Packard Foundation in 1999.[16] She was named a 2001 "Teacher of the Year" in the Bioengineering Department at the Jacobs School of Engineering,[17] and was named an Innovator under 35 by MIT Technology Review in 2003.[3]

In 2005, she left UCSD and joined the MIT faculty in the Division of Health Sciences & Technology and the Department of Electrical Engineering and Computer Science. Bhatia was named a "Scientist to Watch" by The Scientist in 2006 and became a Howard Hughes Medical Institute investigator in 2008.[4][18][19]

Bhatia currently directs the Laboratory for Multiscale Regenerative Technologies at MIT and is affiliated with Brigham and Women's Hospital and the Koch Institute for Integrative Cancer Research.[20] Bhatia is a strong advocate for gender equity and inclusivity in STEM fields.[21] Bhatia helped to found the Diversity Committee of the Biomedical Engineering Society, and is involved with MIT's Society of Women Engineers.[1] While at MIT, she helped to start Keys to Empowering Youth, a program that brings middle-school girls to visit hi-tech labs as a way to encourage them in science and technology.[22] Bhatia and her husband, Jagesh Shah have two daughters.[13][22]

In 2015, Bhatia was elected a member of the National Academy of Engineering for tissue engineering and tissue regeneration technologies, stem cell differentiation, and preclinical drug evaluation.

Research[edit]

Bhatia's doctoral work focused on the development of a way to keep liver cells functioning outside of the human body.[23] She adapted ideas from computer chip design and engineering to the microfabrication of a substrate for liver cells.[24] She successfully applied techniques from photolithography to petri dishes, to create a substrate that would support growth of a functioning microliver in a dish.[1][24][25] Bhatia also used co-cultures of more than one cell type to prevent dedifferentiation of the liver cells, building on the work of Christiane Guguen-Guillouzo in France.[24] She and her coworkers have also used techniques from 3D printing to create a lattice of sugar as a framework for a synthetic vascular system with the goal of supporting larger tissue structures such as an artificial liver.[26] Her work was one of the first projects at MIT in the area of biological micro-electromechanical systems, or Bio-MEMS.[24][27] She is interested in using arrays of living cells as high-throughput platforms to study fundamental aspects of Bio-MEMS in stem cells.[27][28]

Bhatia's research in the Laboratory for Multiscale Regenerative Technologies (LMRT) continues to apply micro- and nanotechnology ideas to tissue repair and regeneration.[29] She studies the interactions between hepatocytes (liver cells) and their microenvironment and develops microfabrication tools to improve cellular therapies for liver disease in an approach referred to as hepatic tissue engineering.[30][31] The goal is to maximize hepatocyte function,[32][33] facilitate design of effective cellular therapies for liver disease,[30] and improve fundamental understanding of liver physiology and pathophysiology.[34] The approach has been used to study diseases including hepatitis and malaria.[1][35]

Since 2008, with assistance from the Medicines for Malaria Venture (MMV), and the Bill & Melinda Gates Foundation her lab has worked on the development of Plasmodium falciparum and Plasmodium vivax cell-based assays. These are used to support the study of parasites and explore possible differential drug sensitivity and identify new anti-relapse medicines for malaria.[36][37]

Bhatia's laboratory is also involved in a multidisciplinary effort to develop nanomaterials as tools for biological studies and as multifunctional agents for cancer therapies. Interests center around nanoparticles and nanoporous materials that can be designed to perform complex tasks. They may be able to home in on a tumor, signal changes in cells or tissues, enhance imaging, or release a therapeutic component.[38] In 2002, Bhatia worked with Erkki Ruoslahti and Warren Chan to develop phage-derived peptide-targeted nanomaterials, or quantum dots, for in vivo targeting of tumors.[24][39][40] By adding tumor-enzyme molecules to nanoparticles she has also created specialized nanoparticles that can react with diseased tissue to create synthetic biomarkers detectable in blood or urine samples.[41] Another project involves engineering beneficial probiotics with the ability to detect or treat cancer cells.[1]

Bhatia holds a number of patents for both clinical and biotechnological applications of engineering principles.[38] In 2015, her company Glympse Bio received initial funding from Kiran Mazumdar-Shaw and Theresia Gouw at Aspect Ventures. In 2018, Glympse received $22 million to further develop “activity sensors” to identify diseases and monitor patient response to drugs.[42]

Books[edit]

  • Bhatia, Sangeeta (1999). Microfabrication in tissue engineering and bioartificial organs. Microsystems. Vol. 5. Boston: Kluwer Academic Publishers. doi:10.1007/978-1-4615-5235-2. ISBN 978-1-4613-7386-5.
  • Palsson, Bernhard; Bhatia, Sangeeta (2004). Tissue engineering. Upper Saddle River, N.J.: Pearson Prentice Hall. ISBN 0-13-041696-7. OCLC 52960378.
  • Nahmias, Yaakov; Bhatia, Sangeeta (2009). Microdevices in biology and medicine. Boston: Artech House. ISBN 978-1-59693-405-4. OCLC 542050628.
  • Schultz, Jerome; Mrksich, Milan; Bhatia, Sangeeta N.; Brady, David J.; Ricco, Antionio J.; Walt, David R.; Wilkins, Charles L., eds. (July 15, 2006). Biosensing: International Research and Development. Springer Science & Business Media. ISBN 978-1-4020-4058-0.

Awards[edit]

Bhatia is the recipient of a number of awards and honors including the following:

References[edit]

  1. ^ a b c d e f Vickmark, Bryce (September 9, 2014). "Cancer-Fighting Inventor Sangeeta Bhatia Wins $500,000 Prize". Science News. Retrieved March 11, 2019.
  2. ^ "2003 Innovators Under 35". MIT Technology Review. 2003. Retrieved August 15, 2011.
  3. ^ a b "Innovators Under 35: Sangeeta Bhatia, 35". MIT Technology Review. 2003. Retrieved September 12, 2009.
  4. ^ a b Nadis, Steve (February 1, 2006). "Sangeeta Bhatia Looks at Life's Architecture". The Scientist. Retrieved September 12, 2009.
  5. ^ "National Academy of Sciences elects six MIT professors for 2017". MIT News. Retrieved May 11, 2017.
  6. ^ "Eight from MIT elected to National Academy of Engineering". MIT News. Retrieved May 11, 2017.
  7. ^ "Two from MIT elected to the National Academy of Medicine for 2019". MIT News. Retrieved October 21, 2019.
  8. ^ "Four MIT faculty named 2015 fellows of the National Academy of Inventors". MIT News. Retrieved May 11, 2017.
  9. ^ Bhatia, Sangeeta (1999). Microfabrication in tissue engineering and bioartificial organs. Microsystems. Vol. 5. Boston: Kluwer Academic Publishers. doi:10.1007/978-1-4615-5235-2. ISBN 978-1-4613-7386-5.
  10. ^ Palsson, Bernhard Ø.; Bhatia, Sangeeta N. (2004). Tissue engineering. Upper Saddle River, N.J.: Pearson Prentice Hall.
  11. ^ Nahmias, Yaakov; Bhatia, Sangeeta N., eds. (2009). Microdevices in biology and medicine. Boston: Artech House.
  12. ^ Schultz, Jerome; Mrksich, Milan; Bhatia, Sangeeta N.; Brady, David J.; Ricco, Antionio J.; Walt, David R.; Wilkins, Charles L., eds. (July 15, 2006). Biosensing: International Research and Development. Springer Science & Business Media. ISBN 978-1-4020-4058-0.
  13. ^ a b c Seftel, Josh; Lewis, Susan K. (2009). "The Many Sides of Sangeeta Bhatia". NOVA Science Now. Public Broadcasting Service. Retrieved September 12, 2009.
  14. ^ "Sangeeta N. Bhatia, MD, PhD Investigator / 2009—Present". Howard Hughes Medical Institute. Retrieved September 12, 2009.
  15. ^ a b "People: Sangeeta N. Bhatia". Harvard-MIT Health Science & Technology. Archived from the original on September 19, 2008. Retrieved September 12, 2009.
  16. ^ a b c Hagen, Denine (December 1, 1999). "UC San Diego Bioengineering Professor Receives Prestigious Packard Foundation Fellowship". UCSD Jacobs School of Engineering.
  17. ^ "Keiko Nomura Named Teacher of the Year". Pulse Newsletter. No. Winter. UCSD Jacobs School of Engineering. 2002. Retrieved September 12, 2009. Other 2001 Teacher of the Year award recipients include: Sangeeta Bhatia Bioengineering
  18. ^ a b "The 2008 HHMI Investigators". Howard Hughes Medical Institute. May 27, 2008. Archived from the original on February 27, 2009. Retrieved September 12, 2009.
  19. ^ "Indian chosen for prestigious scientists' body". India Abroad. July 9, 2008.
  20. ^ "Sangeeta N. Bhatia, MD, PhD". Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology. Retrieved September 12, 2009.
  21. ^ "Sangeeta Bhatia: the biotech entrepreneur advocating for gender equity in STEM fields". The Guardian. Retrieved March 12, 2019.
  22. ^ a b Wood, Martha Crosier (May 26, 2015). "Scene and Herd: Bhatia wins Heinz Award, focuses on tissue engineering". Lexington Local. Retrieved March 11, 2019.
  23. ^ Rinde, Meir (July 9, 2019). "Interview: Sangeeta Bhatia Distillations talks to the 2019 Othmer Gold Medal winner about her work using nanotechnology to detect and treat disease". Distillations. Science History Institute. Retrieved December 6, 2019.
  24. ^ a b c d e Scudellari, Megan (May 1, 2013). "The Organist When molecular biology methods failed her, Sangeeta Bhatia turned to engineering and microfabrication to build a liver from scratch". The Scientist. Retrieved March 11, 2019.
  25. ^ "Engineering Artificial Organs". NOVA. June 1, 2009. Retrieved March 11, 2019.
  26. ^ "3D-printed sugar network to help grow artificial liver". BBC News. July 2, 2012. Retrieved March 12, 2019.
  27. ^ a b Chin, Vicki I.; Taupin, Philippe; Sanga, Sandeep; Scheel, John; Gage, Fred H.; Bhatia, Sangeeta N. (November 5, 2004). "Microfabricated platform for studying stem cell fates" (PDF). Biotechnology and Bioengineering. 88 (3): 399–415. doi:10.1002/bit.20254. PMID 15486946. S2CID 18023873. Retrieved March 11, 2019.
  28. ^ Borenstein, J. T.; Vunjak-Novakovic, G. (November 2011). "Engineering Tissue with BioMEMS". IEEE Pulse. 2 (6): 28–34. doi:10.1109/MPUL.2011.942764. PMC 3414430. PMID 22147066.
  29. ^ Thalmann, Nadia (2014). 3D Multiscale Physiological Human. London: Springer. p. 39. ISBN 978-1-4471-6275-9. OCLC 867854892.
  30. ^ a b Bhatia, S. N.; Underhill, G. H.; Zaret, K. S.; Fox, I. J. (July 16, 2014). "Cell and tissue engineering for liver disease". Science Translational Medicine. 6 (245): 245sr2. doi:10.1126/scitranslmed.3005975. PMC 4374645. PMID 25031271.
  31. ^ Shan, Jing; Stevens, Kelly R.; Trehan, Kartik; Underhill, Gregory H.; Chen, Alice A.; Bhatia, Sangeeta N. "HEPATIC TISSUE ENGINEERING (ca. 2010)" (PDF). Laboratory for Multiscale Regenerative Technologies. Retrieved March 11, 2019.[dead link]
  32. ^ Bhatia, Sangeeta N. (1999). Microfabrication in Tissue Engineering and Bioartificial Organs. Springer US. ISBN 978-1-4613-7386-5. Retrieved March 7, 2019.
  33. ^ Hui, E. E.; Bhatia, S. N. (March 27, 2007). "Micromechanical control of cell-cell interactions". Proceedings of the National Academy of Sciences. 104 (14): 5722–5726. doi:10.1073/pnas.0608660104. PMC 1851558. PMID 17389399.
  34. ^ Park, J.-K.; Lee, S.-K.; Lee, D.-H.; Kim, Y.-J. (February 11, 2009). "Bioartificial Liver". In Meyer, Ulrich; Meyer, Thomas; Handschel, Jörg; Wiesmann, Hans Peter (eds.). Fundamentals of tissue engineering and regenerative medicine. Springer. p. 407. ISBN 978-3-540-77755-7. Retrieved March 7, 2019.
  35. ^ "Tracking dormant malaria Novel technology could allow researchers to develop and test new antimalaria drugs". Science Daily. February 22, 2018. Retrieved March 11, 2019.
  36. ^ "Discovering new molecules to target the relapse Prof Sangeeta Bhatia Prof Sangeeta Bhatia, Director, Laboratory for Multiscale Regenerative Technologies, MIT". MMV. 2013. Retrieved March 11, 2019.
  37. ^ March, Sandra; Ng, Shengyong; Velmurugan, Soundarapandian; Galstian, Ani; Shan, Jing; Logan, David J.; Carpenter, Anne E.; Thomas, David; Sim, B. Kim Lee; Mota, Maria M.; Hoffman, Stephen L.; Bhatia, Sangeeta N. (July 2013). "A Microscale Human Liver Platform that Supports the Hepatic Stages of Plasmodium falciparum and vivax". Cell Host & Microbe. 14 (1): 104–115. doi:10.1016/j.chom.2013.06.005. PMC 3780791. PMID 23870318.
  38. ^ a b "Sangeeta Bhatia Core Faculty". Institute for Medical Engineering & Science. Retrieved March 11, 2019.
  39. ^ Akerman, M. E.; Chan, W. C. W.; Laakkonen, P.; Bhatia, S. N.; Ruoslahti, E. (September 16, 2002). "Nanocrystal targeting in vivo". Proceedings of the National Academy of Sciences. 99 (20): 12617–12621. Bibcode:2002PNAS...9912617A. doi:10.1073/pnas.152463399. PMC 130509. PMID 12235356.
  40. ^ Mann, AP; Scodeller, P; Hussain, S; Joo, J; Kwon, E; Braun, GB; Mölder, T; She, Z; Kotamraju, VR; Ranscht, B; Krajewski, S; Teesalu, T; Bhatia, S; Sailor, MJ; Ruoslahti, E (2016). "A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries". Nat Commun. 7: 11980. Bibcode:2016NatCo...711980M. doi:10.1038/ncomms11980. PMC 4931241. PMID 27351915.
  41. ^ Trafton, Anne (December 17, 2012). "Earlier Detection of Cancer May Be Enhanced by MIT Discovery with Biomarkers Collected in Urine". Senior Journal: Health & Medicine for Senior Citizens. New Tech Media. Retrieved March 12, 2019.
  42. ^ Carroll, John (October 9, 2018). "MIT spinout from Sangeeta Bhatia's lab gets a $22M round to develop new disease and drug sensors". Endpoints News. Retrieved March 11, 2019.
  43. ^ "Sangeeta Bhatia FTSE". Australian Academy of Technological Sciences and Engineering. Retrieved October 11, 2023.
  44. ^ "Othmer Gold Medal". Science History Institute. May 31, 2016. Retrieved March 7, 2018.
  45. ^ "Utrecht University to present two honorary doctorates". February 16, 2017. Retrieved April 3, 2018.
  46. ^ "Announcing our 2017 Catalyst Award Winners!". Science Club for Girls community. Retrieved March 12, 2019.
  47. ^ "The Heinz Awards :: Sangeeta Bhatia". www.heinzawards.net. Retrieved April 3, 2018.
  48. ^ "Dr. Sangeeta Bhatia - Lemelson-MIT Program". lemelson.mit.edu. Retrieved April 3, 2018.
  49. ^ "BEAM Award Winners". Brown School of Engineering. Retrieved March 7, 2019.

External links[edit]