Timeline of biotechnology
Appearance
(Redirected from 2023 in biotechnology)
This article needs additional citations for verification. (December 2006) |
The historical application of biotechnology throughout time is provided below in chronological order.
These discoveries, inventions and modifications are evidence of the application of biotechnology since before the common era and describe notable events in the research, development and regulation of biotechnology.
Before Common Era
[edit]- 5000 BCE – Chinese discover fermentation through beer making.
- 6000 BCE – Yogurt and cheese made with lactic acid-producing bacteria by various people.
- 4500 BCE – Egyptians bake leavened bread using yeast.[1]
- 500 BCE – Moldy soybean curds used as an antibiotic.
- 300 BCE – The Greeks practice crop rotation for maximum soil fertility.[2]
- 100 AD – Chinese use chrysanthemum as a natural insecticide.[1][3]
Pre-20th century
[edit]- 1663 – First recorded description of living cells by Robert Hooke.
- 1677 – Antonie van Leeuwenhoek discovers and describes bacteria and protozoa.
- 1798 – Edward Jenner uses first viral vaccine to inoculate a child from smallpox.
- 1802 – The first recorded use of the word biology.
- 1824 – Henri Dutrochet discovers that tissues are composed of living cells.
- 1838 – Protein discovered, named and recorded by Gerardus Johannes Mulder and Jöns Jacob Berzelius.
- 1862 – Louis Pasteur discovers the bacterial origin of fermentation.
- 1863 – Gregor Mendel discovers the laws of inheritance.
- 1864 – Antonin Prandtl invents first centrifuge to separate cream from milk.
- 1869 – Friedrich Miescher identifies DNA in the sperm of a trout.
- 1871 – Felix Hoppe-Seyler discovers invertase, which is still used for making artificial sweeteners.
- 1877 – Robert Koch develops a technique for staining bacteria for identification.
- 1878 – Walther Flemming discovers chromatin leading to the discovery of chromosomes.
- 1881 – Louis Pasteur develops vaccines against bacteria that cause cholera and anthrax in chickens.
- 1885 – Louis Pasteur and Emile Roux develop the first rabies vaccine and use it on Joseph Meister.
20th century
[edit]- 1919 – Károly Ereky, a Hungarian agricultural engineer, first uses the word biotechnology.[4]
- In 1919, a pivotal milestone was reached with the production of citric acid by Aspergillus niger, marking the inception of the first aerobic fermentation process. This breakthrough spurred the development of technologies to ensure the supply of sterile air at a large scale, paving the way for future advancements in industrial fermentation processes.[5]
- 1928 – Alexander Fleming notices that a certain mould could stop the duplication of bacteria, leading to the first antibiotic: penicillin.
- 1933 – Hybrid corn is commercialized.
- 1942 – Penicillin is mass-produced in microbes for the first time.
- 1950 – The first synthetic antibiotic is created.
- 1951 – Artificial insemination of livestock is accomplished using frozen semen.
- 1952 – L.V. Radushkevich and V.M. Lukyanovich publish clear images of 50 nanometer diameter tubes made of carbon, in the Soviet Journal of Physical Chemistry.
- 1953 – James D. Watson and Francis Crick describe the structure of DNA.
- 1958 – The term bionics is coined by Jack E. Steele.
- 1964 – The first commercial myoelectric arm is developed by the Central Prosthetic Research Institute of the USSR and distributed by the Hangar Limb Factory of the UK.
- 1972 – The DNA composition of chimpanzees and gorillas is discovered to be 99% similar to that of humans.
- 1973 – Stanley Norman Cohen and Herbert Boyer perform the first successful recombinant DNA experiment, using bacterial genes.[6]
- 1974 – Scientists invent the first biocement for industrial applications.
- 1975 – Method for producing monoclonal antibodies developed by Köhler and César Milstein.
- 1978 – North Carolina scientists Clyde Hutchison and Marshall Edgell show it is possible to introduce specific mutations at specific sites in a DNA molecule.[7]
- 1980 – The U.S. patent for gene cloning is awarded to Cohen and Boyer.
- 1982 – Humulin, Genentech's human insulin drug produced by genetically engineered bacteria for the treatment of diabetes, is the first biotech drug to be approved by the Food and Drug Administration.
- 1983 – The Polymerase Chain Reaction (PCR) technique is conceived.
- 1990 – First federally approved gene therapy treatment is performed successfully on a young girl who suffered from an immune disorder.
- 1994 – The United States Food and Drug Administration approves the first GM food: the "Flavr Savr" tomato.
- 1997 – British scientists, led by Ian Wilmut from the Roslin Institute, report cloning Dolly the sheep using DNA from two adult sheep cells.
- 1999 – Discovery of the gene responsible for developing cystic fibrosis.
- 2000 – Completion of a "rough draft" of the human genome in the Human Genome Project.
21st century
[edit]This section may be too long to read and navigate comfortably. (September 2022) |
- 2001 – Celera Genomics and the Human Genome Project create a draft of the human genome sequence. It is published by Science and Nature Magazine.
- 2002 – Rice becomes the first crop to have its genome decoded.
- 2003 – The Human Genome Project is completed, providing information on the locations and sequence of human genes on all 46 chromosomes.
- 2004 – Addgene launches.
- 2008 – Japanese astronomers launch the first Medical Experiment Module called "Kibō", to be used on the International Space Station.
- 2010-Over the past two decades, a considerable focus has been directed toward creating sustainable alternatives for petroleum-based fuels, chemicals, and materials. Major players in the chemical industry, such as BASF, DSM, BP, and Total, have initiated significant projects and collaborations in metabolic engineering. Additionally, various startups have emerged with the goal of pioneering new bio-based processes for sustainable chemicals. Despite advancements in establishing large-scale processes, the overall impact on transitioning the chemical industry from petroleum-based to bio-based has been limited. For instance, efforts to engineer microbial production of succinic acid have faced challenges, leading to the termination or minimal-scale production of related research and commercial activities. Out of the chemicals listed by the US Department of Energy, only lactic acid and itaconic acid have achieved industrial-scale production. Lactic acid, added to the list in 2010 after large-scale production was established, currently holds a market value exceeding US$2.5 billion, primarily used in the production of polylactate.[5]
- 2009 – Cedars-Sinai Heart Institute uses modified SAN heart genes to create the first viral pacemaker in guinea pigs, now known as iSANs.
- 2012 – Thirty-one-year-old Zac Vawter successfully uses a nervous system-controlled bionic leg to climb the Chicago Willis Tower.
- 2018-The Joint Centre of Excellence by Imperial College and the UK National Physical Laboratory focuses on advancing industry collaboration to transform high-value manufacturing into high-value products. Noteworthy progress includes the adoption of SBOL by ACS Synthetic Biology in 2016 and ongoing efforts, such as engagement with the BioRoboost project, aiming for international standards with partners from the US, China, Japan, and Singapore.[8]
- 2019 – Scientists report, for the first time, the use of the CRISPR technology to edit human genes to treat cancer patients with whom standard treatments were not successful.[9][10]
- The progression of commercial applications in synthetic biology is notably swift, propelled predominantly by investments directed towards start-up enterprises and small to medium-sized enterprises (SMEs) engaged in the dissemination of tools, services, and products to the market. This is exemplified by the informational resource titled 'Synthetic Biology UK — A Decade of Rapid Progress,' disseminated online in July 2019, which furnishes a demonstrative compilation of instances rooted in the United Kingdom.[8]
- 2019 – In a study researchers describe a new method of genetic engineering superior to previous methods like CRISPR they call "prime editing".[11][12][13]
2020
[edit]- 27 January – Scientists demonstrate a "Trojan horse" designer-nanoparticle that makes blood cells eat away – from the inside out – portions of atherosclerotic plaque that cause heart attacks[14][15][16] and are the current most common cause of death globally.[17][18]
- 5 February – Scientists develop a CRISPR-Cas12a-based gene editing system that can probe and control several genes at once and can implement logic gating to e.g. detect cancer cells and execute therapeutic immunomodulatory responses.[19][20]
- 6 February – Scientists report that preliminary results from a phase I trial using CRISPR-Cas9 gene editing of T cells in patients with refractory cancer demonstrates that, according to their study, such CRISPR-based therapies can be safe and feasible.[21][22][23][24]
- 4 March – Scientists report that they have developed a way to 3D bioprint graphene oxide with a protein. They demonstrate that this novel bioink can be used to recreate vascular-like structures. This may be used in the development of safer and more efficient drugs.[25][26]
- 4 March – Scientists report to have used CRISPR-Cas9 gene editing inside a human's body for the first time. They aim to restore vision for a patient with inherited Leber congenital amaurosis and state that it may take up to a month to see whether the procedure was successful. In an hour-long surgery study approved by government regulators doctors inject three drops of fluid containing viruses under the patient's retina. In earlier tests in human tissue, mice and monkeys scientists were able to correct half of the cells with the disease-causing mutation, which was more than what is needed to restore vision. Unlike germline editing these DNA modifications aren't inheritable.[27][28][29][30]
- 9 March – Scientists show that CRISPR-Cas12b is a third promising CRISPR editing tool, next to Cas9 and Cas12a, for plant genome engineering.[31][32]
- 14 March – Scientists report in a preprint to have developed a CRISPR-based strategy, called PAC-MAN (Prophylactic Antiviral Crispr in huMAN cells), that can find and destroy viruses in vitro. However, they weren't able to test PAC-MAN on the actual SARS-CoV-2, use a targeting-mechanism that uses only a very limited RNA-region, haven't developed a system to deliver it into human cells and would need a lot of time until another version of it or a potential successor system might pass clinical trials. In the study published as a preprint they write that the CRISPR-Cas13d-based system could be used prophylactically as well as therapeutically and that it could be implemented rapidly to manage new pandemic coronavirus strains – and potentially any virus – as it could be tailored to other RNA-targets quickly, only requiring a small change.[33][34][35][36] The paper was published on 29 April 2020.[37][38]
- 16 March – Researchers report that they have developed a new kind of CRISPR-Cas13d screening platform for effective guide RNA design to target RNA. They used their model to predict optimized Cas13 guide RNAs for all protein-coding RNA-transcripts of the human genome's DNA. Their technology could be used in molecular biology and in medical applications such as for better targeting of virus RNA or human RNA. Targeting human RNA after it has been transcribed from DNA, rather than DNA, would allow for more temporary effects than permanent changes to human genomes. The technology is made available to researchers through an interactive website and free and open source software and is accompanied by a guide on how to create guide RNAs to target the SARS-CoV-2 RNA genome.[39][40]
- 16 March – Scientists present new multiplexed CRISPR technology, called CHyMErA (Cas Hybrid for Multiplexed Editing and Screening Applications), that can be used to analyse which or how genes act together by simultaneously removing multiple genes or gene-fragments using both Cas9 and Cas12a.[41][42]
- 10 April – Scientists report to have achieved wireless control of adrenal hormone secretion in genetically unmodified rats through the use of injectable, magnetic nanoparticles (MNPs) and remotely applied alternating magnetic fields heats them up. Their findings may aid research of physiological and psychological impacts of stress and related treatments and present an alternative strategy for modulating peripheral organ function than problematic implantable devices.[43][44]
- 14 April – Researchers report to have developed a predictive algorithm which can show in visualizations how combinations of genetic mutations can make proteins highly effective or ineffective in organisms – including for viral evolution for viruses like SARS-CoV-2.[45][46]
- 15 April – Scientists describe and visualize the atomical structure and mechanical action of the bacteria-killing bacteriocin R2 pyocin and construct engineered versions with different behaviours than the naturally occurring version. Their findings may aid the engineering of nanomachines such as for targeted antibiotics.[47][48]
- 20 April – Researchers demonstrate a diffusive memristor fabricated from protein nanowires of the bacterium Geobacter sulfurreducens which functions at substantially lower voltages than previously described ones and may allow the construction of artificial neurons which function at voltages of biological action potentials. The nanowires have a range of advantages over silicon nanowires and the memristors may be used to directly process biosensing signals, for neuromorphic computing and/or direct communication with biological neurons.[49][50][51]
- 27 April – Scientists report to have genetically engineered plants to glow much brighter than previously possible by inserting genes of the bioluminescent mushroom Neonothopanus nambi. The glow is self-sustained, works by converting plants' caffeic acid into luciferin and, unlike for bacterial bioluminescence genes used earlier, has a high light output that is visible to the naked eye.[52][53][54][55][unreliable source?][56][57]
- 8 May – Researchers report to have developed artificial chloroplasts – the photosynthetic structures inside plant cells. They combined thylakoids, which are used for photosynthesis, from spinach with a bacterial enzyme and an artificial metabolic module of 16 enzymes, which can convert carbon dioxide more efficiently than plants can alone, into cell-sized droplets. According to the study this demonstrates how natural and synthetic biological modules can be matched for new functional systems.[58][59][60][61]
- 11 May – Researchers report the development of synthetic red blood cells that for the first time have all of the natural cells' known broad natural properties and abilities. Furthermore, methods to load functional cargos such as hemoglobin, drugs, magnetic nanoparticles, and ATP biosensors may enable additional non-native functionalities.[62][63]
- 12 June – Scientists announce preliminary results that demonstrate successful treatment during a small trial of the first to use of CRISPR gene editing (CRISPR-Cas9) to treat inherited genetic disorders – beta thalassaemia and sickle cell disease.[64][65][66][67]
- 8 July – Mitochondria are gene-edited for the first time, using a new kind of CRISPR-free base editor (DdCBE), by a team of researchers.[68][69]
- 8 July – A team of RIKΞN researchers report that they succeeded in using a genetically altered variant of R. sulfidophilum to produce spidroins, the main proteins in spider silk.[70][71]
- 10 July – Scientists report that after mice exercise their livers secrete the protein GPLD1, which is also elevated in elderly humans who exercise regularly, that this is associated with improved cognitive function in aged mice and that increasing the amount of GPLD1 produced by the mouse liver could yield many benefits of regular exercise for the brain.[72][73]
- 17 July – Scientists report that yeast cells of the same genetic material and within the same environment age in two distinct ways, describe a biomolecular mechanism that can determine which process dominates during aging and genetically engineer a novel aging route with substantially extended lifespan.[74][75]
- 24 July – Scientists report the development of a ML-based process using genome databases for designing novel proteins. They used inverse statistical physics to learn the patterns of amino acid conservation and co-evolution to identify design-rules.[76][77]
- 8 September – Scientists report that suppressing activin type 2 receptors-signalling proteins myostatin and activin A via activin A/myostatin inhibitor ACVR2B – tested preliminarily in humans in the form of ACE-031 in the 2010s[78][79] – can protect against both muscle and bone loss in mice. The mice were sent to the International Space Station and could largely maintain their muscle weights – about twice those of wild type due to genetic engineering for targeted deletion of the myostatin gene – under microgravity.[80][81]
- 18 September – Researchers report the development of two active guide RNA-only elements that, according to their study, may enable halting or deleting gene drives introduced into populations in the wild with CRISPR-Cas9 gene editing. The paper's senior author cautions that the two neutralizing systems they demonstrated in cage trials "should not be used with a false sense of security for field-implemented gene drives".[82][83]
- 28 September – Biotechnologists report the genetically engineered refinement and mechanical description of synergistic enzymes – PETase, first discovered in 2016, and MHETase of Ideonella sakaiensis – for faster depolymerization of PET and also of PEF, which may be useful for depollution, recycling and upcycling of mixed plastics along with other approaches.[84][85][86]
- 7 October – The 2020 Nobel Prize in Chemistry is awarded to Emmanuelle Charpentier and Jennifer A. Doudna for their work on genome editing.[87]
- 10 November – Scientists show, with an experiment with different gravity environments on the ISS, that microorganisms could be employed to mine useful elements from basalt rocks via bioleaching in space.[89][88]
- 18 November – Researchers report that CRISPR/Cas9, using a lipid nanoparticle delivery system, has been used to treat cancer effectively in a living animal for the first time.[90][91]
- 25 November – Scientists report the development of micro-droplets for algal cells or synergistic algal-bacterial multicellular spheroid microbial reactors capable of producing oxygen as well as hydrogen via photosynthesis in daylight under air, which may be useful as a hydrogen economy biotechnology.[92][93]
- 30 November – An artificial intelligence company demonstrates an AI algorithm-based approach for protein folding, one of the biggest problems in biology that achieves a protein structure prediction accuracy of over 90% in tests of the biennial CASP assessment with AlphaFold 2.[94][95][96]
- 2 December – The world's first regulatory approval for a cultivated meat product is awarded by the Government of Singapore. The chicken meat was grown in a bioreactor in a fluid of amino acids, sugar, and salt.[97] The chicken nuggets food products are ~70% lab-grown meat, while the remainder is made from mung bean proteins and other ingredients. The company pledged to strive for price parity with premium "restaurant" chicken servings.[98][99]
- 11 December – Scientists report that they have rebuilt a human thymus using stem cells and a bioengineered scaffold.[100][101]
2021
[edit]- CRISPR/Cas9 genome editing to produce a tenfold increase in super-bug targeting formicamycin antibiotics.[102][103] Scientists report the use of
- lipid nanoparticles to deliver CRISPR genome editing into the livers of mice, resulting in a 57% reduction of LDL cholesterol levels.[104][105] Scientists use novel
- Researchers describe a CRISPR-dCas9 epigenome editing method for a potential treatment of chronic pain, an analgesia that represses Nav1.7 and showed therapeutic potential in three mouse models of pain.[106][107]
- bacteria of Methylobacterium, tentatively named Methylobacterium ajmalii, associated with three new strains, designated IF7SW-B2T, IIF1SW-B5, and IIF4SW-B5, on the ISS. These potentially have ecological significance in closed microgravity systems.[108][109] Scientists report the discovery of unknown species of
- A study finds that, despite suboptimal implementation, the snapshot mass-testing for COVID-19 of ~80% of Slovakia's population at the end of October 2020 was highly efficacious, decreasing observed prevalence by 58% within one week and 70% compared to a hypothetical scenario of no snapshot-mass-testing.[110][111]
- worldwide pollution risks due to the use of pesticides are estimated with a new environmental model.[112][113] The extensive
- epigenome editing, CRISPRoff, that can heritably silence the gene expression of "most genes" and allows for reversible modifications.[114][115] Scientists present a tool for
- human-monkey hybrid embryos – some survived for 19 days.[116][117][118] Scientists report the, controversial, first creation of
- A malaria vaccine with 77% efficacy after 1 year – and first to meet the WHO's goal of 75% efficacy – is reported by the University of Oxford.[119][120]
- CRISPR gene editing is demonstrated to decrease LDL cholesterol in vivo in Macaca fascicularis by 60%.[121][122]
- eyesight of a patient with Retinitis pigmentosa using eye-injected viral vectors for genes encoding the light-sensing channelrhodopsin protein ChrimsonR found in glowing algae, and light stimulation of them via engineered goggles that transform visual information of the environment.[123][124] Researchers partially restore
- circadian rhythms of tissues via Ck1 inhibition which may be useful for chronobiology research and repair of organs that are "out of sync".[125][126] Scientists develop a light-responsive days-lasting modulator of
- cell nuclei and find a way of transmuting one cell type into that of another.[127][128] Biologists report the development of a new updated classification system for
- biodegradable packaging alternative to plastic based on research about molecularly similar spider silk known for its high strength.[129][130] Researchers report the development of a plant proteins-based
- The first, small clinical trial of CRISPR gene editing in which a – lipid nanoparticle formulated – CRISPR (with mCas9) gene editing therapeutic is injected in vivo into bloodstream of humans concludes with promising results.[131][132]
- biosensors for pathogenic signatures – such as of SARS-CoV-2 – that are wearable such as face masks.[133][134] Researchers report the development of embedded
- solar-energy-driven production of microbial foods from direct air capture substantially outperforms agricultural cultivation of staple crops in terms of land use.[135][136] Scientists report that
- cow stomachs could break down three types of plastics.[137][138] Researchers report that a mix of microorganisms from
- monoclonal antibodies based female contraception.[139][140] Researchers report promising results of ongoing testing and development of an engineered
- Researchers demonstrate that probiotics can help coral reefs mitigate heat stress, indicating that such could make them more resilient to climate change and mitigate coral bleaching.[141][142]
- bioprinting method to produce steak-like cultured meat, composed of three types of bovine cell fibers.[143][144] Researchers present a
- Bioengineers report the development of a viable CRISPR-Cas gene-editing system, "CasMINI", that is about twice as compact as the commonly used Cas9 and Cas12a.[145][146]
- Media outlets report that the world's first cultured coffee product has been created, still awaiting regulatory approval for near-term commercialization. It was also reported that another biotechnology company produced and sold "molecular coffee" without clear details of the molecular composition or similarity to cultured coffee except having compounds that are in green coffee and that a third company is working on the development of a similar product made from extracted molecules.[147][148][149] Such products, for which multiple companies' R&D have acquired substantial funding, may have equal or highly similar effects, composition and taste as natural products but use less water, generate less carbon emissions, require less and relocated labor[148] and cause no deforestation.[147]
- Researchers report the world's first artificial synthesis of starch. The material essential for many products and the most common carbohydrate in human diets was made from CO2 in a cell-free process and could reduce land, pesticide and water use as well as greenhouse gas emissions while increasing food security.[150][151]
- Media outlets report that in Japan the first CRISPR-edited food has gone on public sale. Tomatoes were genetically modified for around five times the normal amount of possibly calming[152] GABA.[153] CRISPR was first applied in tomatoes in 2014.[154]
- Biomedical researchers demonstrate a switchable Yamanaka factors-reprogramming-based approach for regeneration of damaged heart without tumor-formation with success in mice if the intervention is done immediately before or after a heart attack.[155][156]
- The World Health Organization endorses the first malaria vaccine – the antiparasitic RTS,S.[157]
- extracting and separating rare earth elements is described, using a bacteria-derived protein called lanmodulin, which binds easily to the metals.[158][159] A new eco-friendly way of
- Medical researchers announce that on 25 September the first successful xenotransplantation of a, genetically engineered, pig kidney, along with the pig thymus gland to make the immune system recognize it as part of the body, to a brain-dead human with no immediate signs of rejection, moving the practice closer to clinical trials with some of the living humans waiting for kidney transplants.[160][161]
- Researchers report the development of chewing gums that could mitigate COVID-19 spread. The ingredients – CTB-ACE2 proteins grown via plants – bind to the virus.[162][163]
- Bionanoengineers report a novel therapy for spinal cord injury – an injectable gel of nanofibers that contain moving molecules that cause cellular repair signaling and mimic the matrix around cells. The therapy enabled paralyzed mice to walk again.[164][165][166]
- clarification needed] first supercomputational approaches for the development of new antibiotic derivatives against antimicrobial resistance.[167][168] Biochemists report one of the[
- Scientists report the development of a vaccine of mRNAs for the body build 19 proteins in tick saliva which, by enabling quick development of erythema (itchy redness) at the bite site, protects guinea pigs against Lyme disease from ticks.[169][170]
- Sri Lanka announces that it will lift its import ban on pesticides and herbicides, explained by both a lack of sudden changes to widely applied practices or education systems and contemporary economics and, by extension, food security, protests and high food costs. The effort for the first transition to a completely organic farming nation was challenged by effects of the COVID-19 pandemic.[171][172]
- A team of scientists reports a new form of biological reproduction in the, <1 mm sized, xenobots that are made up of and are emersed in frog cells.[173][174]
- DNA data storage with 100 times the density of previous techniques is announced.[175] A method of
- stem cell-based treatment for Type 1 diabetes is announced.[176][177] A
- Scientists demonstrate that grown brain cells integrated into digital systems can carry out goal-directed tasks with performance-scores. In particular, playing a simulated (via electrophysiological stimulation) Pong which the cells learned to play faster than known machine intelligence systems, albeit to a lower skill-level than both AI and humans. Moreover, the study suggests it provides "first empirical evidence" of information-processing capacity differences between neurons from different species.[178][179] Such technologies are referred to as Organoid Intelligence (OI).[180]
- Researchers report the development of face masks that glow under ultraviolet light if they contain SARS-CoV-2 when the filter is taken out and sprayed with a fluorescent dye that contains antibodies from ostrich eggs.[181]
- Scientists report the development of a genome editing system, called "twin prime editing", which surpasses the original prime editing system reported in 2019 in that it allows editing large sequences of DNA, addressing the method's key drawback.[182][183]
- An mRNA vaccine against HIV with promising results in tests with mice and primates is reported.[184][185]
- A vaccine to remove senescent cells, a key driver of the aging process, is demonstrated in mice by researchers from Japan.[186][187]
- Scientists call for accelerated efforts in the development of broadly protective vaccines, especially a universal coronavirus vaccine that durably protects not just against all SARS-CoV-2 variants but also other coronaviruses, including already identified animal coronaviruses with pandemic potential.[188]
- Researchers report the development of DNA-based "nanoantennas" that attach to proteins and produce a signal via fluorescence when these perform their biological functions, in particular for distinct conformational changes.[189][190]
- The first CRISPR-gene-edited seafood and second set of CRISPR-edited food has gone on public sale in Japan: two fish[vague] of which one species grows to twice the size of natural specimens due to disruption of leptin, which controls appetite, and the other grows to 1.2 the natural size with the same amount of food due to disabled myostatin, which inhibits muscle growth.[191][192]
2022
[edit]- Scientists report the development of sensors to gather and identify DNA of animals from air (airborne eDNA).[193][194][195]
- sequencing of a human genome, accomplished in just five hours and two minutes.[196][197] A team reports the fastest ever
- A chip with molecular circuit components in single-molecule (bio)sensors is demonstrated.[198]
- Bionanotechnologists report the development of a viable biosensor, ROSALIND 2.0, that can detect levels of diverse water pollutants.[199][200]
- development of 3D-printed nano-"skyscraper" electrodes that house cyanobacteria for extracting substantially more sustainable bioenergy from their photosynthesis than before.[201][202] Researchers report the
- CRISPR-based gene knockout of KRN2 in maize and OsKRN2 in rice increased grain yields by ~10% and ~8% and did not find any negative effects.[203][204] Genetic engineers report field test results that show
- Publication of research reporting the sequencing of the remaining gap of the Human genome.[205][206]
- relevant?]Researchers report that CRISPR-Cas9 gene editing has been used to boost vitamin D in tomatoes.[207][208][209] [
- 3D-printed lab-grown wood. It is unclear if it could ever be used on a commercial scale (e.g. with sufficient production efficiency and quality).[210][211] Scientists report the first
- Researchers report a robotic finger covered in a type of manufactured living human skin.[212][213]
- [relevant?]Researchers report the controlled growth of diverse foods in the dark via solar energy and electrocatalysis-based artificial photosynthesis as a potential way to increase energy efficiency of food production and reduce its environmental impacts.[214][215]
- algae biopanels by a company for sustainable energy generation with unclear viability[216][217] after other researchers built the self-powered BIQ house prototype in 2013.[218][219] News outlets report about the development of
- [relevant?]Researchers report the development of deep learning software that can design proteins that contain prespecified functional sites.[220][221]
- Researchers introduce the concept of necrobotics and demonstrate it by repurposing dead spiders as robotic grippers by activating their gripping arms via applying pressurized air.[222][223]
- [relevant?]DeepMind announces that its AlphaFold program has uncovered the structures of more than 200 million folded proteins, essentially all of those known to science.[224][225]
- [relevant?]The creation of artificial neurons that can receive and release dopamine (chemical signals rather than electrical signals) and communicate with natural rat muscle and brain cells is reported, with potential for use in BCIs/prosthetics.[226][227]
- Multiple gene editing of soybean is shown to improve photosynthesis and boost yields by 20%.[228][229]
- First report of Synthetic embryos grown exclusively from mouse embryonic stem cells, without sperm or eggs or a uterus, with natural-like development and some surviving until day 8.5 where early organogenesis, including formation of foundations of a brain, occurs.[230][231][232][233][234] They grew in vitro and subsequently ex utero in an artificial womb developed the year before by the same group.[235][236]
- evidence-based reform of regulation of genetically modified crops (moving from regulation based on characteristics of the development-process to characteristics of the product) in a paywalled article.[237][238] Scientists elaborate a need for an
- Researchers report the development of remote controlled cyborg cockroaches functional if moving to sunlight for recharging.[239][240]
- synthetic biology-based process for recycling of plastics mixtures is presented.[241][242] A novel
- Emulate researchers assess advantages of using liver-chips predicting drug-induced liver injury which could reduce the high costs and time needed in drug development workflows/pipelines, sometimes described as the pharmaceutical industry's "productivity crisis".[243][244]
- In a paywalled article, American scientists propose policy-based measures to reduce large risks from life sciences research – such as pandemics through accident or misapplication. Risk management measures may include novel international guidelines, effective oversight, improvement of US policies to influence policies globally, and identification of gaps in biosecurity policies along with potential approaches to address them.[245][246]
- 3D printing of scaffolds to reduce the cost of cultured meat.[247][248] News reports about the development in China of an edible, plant-based ink derived from food waste, which could be used in
Medical applications
[edit]Some of these items may also have potential nonmedical applications and vice versa.
- [relevant?]The first successful xenogeneic heart transplant, from a genetically modified pig to a human patient, is reported.[249][250]
- Microbiologists demonstrate an individually adjusted phage-antibiotic combination as an antimicrobial resistance treatment,[251][252] calling for scaling up the research[253] and further development of this approach.[254][relevant?]
- [relevant?]Scientists regrow the missing legs of adult frogs, which are naturally unable to regenerate limbs, within 1.5 years using a five-drug mixture applied for 24 hours via a silicone wearable bioreactor.[255][256][relevant?]
- relevant?]Scientists report the detection of anomalous unknown-host SARS-CoV-2 lineages with RT-qPCR-based wastewater surveillance.[257][258] [
- relevant?]Researchers demonstrate a spinal cord stimulator that enables patients with spinal cord injury to walk again via epidural electrical stimulation (EES) with substantial neurorehabilitation-progress during the first day.[259][260] On the same day, a separate team reports the first[261] engineered functional human (motor-)neuronal networks derived from iPSCs from the patient for implantation to regenerate injured spinal cord showing success in tests with mice.[262][263] [
- relevant?]A new therapy called CINDELA is reported by scientists in South Korea, which uses CRISPR-Cas9 to kill cancer cells without harming normal tissues.[264][265][266] [
- [relevant?]A new compact CRISPR gene editing tool better suited for therapeutic (temporary) RNA editing than Cas13 is reported, Cas7-11,[267][268] – of which an early version was used for in vitro editing in 2021.[269]
- relevant?]The world's smallest remote-controlled walking robot, measuring just half a millimetre wide, is demonstrated. Potential applications include the clearing of blocked arteries.[270][271] [
- [relevant?]Success of record-long (3 days rather than usually <12 hours) of human transplant organ preservation with machine perfusion of a liver is reported. It could possibly be extended to 10 days and prevent substantial cell damage by low temperature preservation methods.[272][273] On the same day, a separate study reports new cryoprotectant solvents, tested with cells, that could preserve organs by the latter methods for much longer with substantially reduced damage.[274][275]
- [relevant?]First success of a clinical trial for a 3D bioprinted transplant, an external ear to treat microtia,[276] that is made from the patient's own cells is reported.[277]
- [relevant?]Researchers describe a new light-activated 'photoimmunotherapy' for brain cancer in vitro. They believe it could join surgery, chemotherapy, radiotherapy and immunotherapy as a fifth major form of cancer treatment.[278][279]
- [relevant?]Researchers, health organizations and regulators are discussing, investigating and partly recommending COVID-19 vaccine boosters that mix the original vaccine formulation with Omicron-adjusted parts – such as spike proteins of a specific Omicron subvariant – to better prepare the immune system to recognize a wide variety of variants amid substantial and ongoing immune evasion by Omicron.[280]
- A new CRISPR gene editing/repair tool alternative to fully active Cas9 is reported – Cas9-derived nickases mediated homologous chromosome-templated repair, applicable to organisms whose matching chromosome has the desired gene/s, which is demonstrated to be more effective than Cas9 and cause fewer off-target edits.[281][282]
- [relevant?] Progress towards a pan coronavirus vaccine is announced, following tests on mice. Antibodies targeting the S2 subunit of SARS-CoV-2's spike protein are found to neutralise multiple coronavirus variants.[283][284]
- [relevant?]Scientists report an organ perfusion system that can restore, i.e. on the cellular level, multiple vital (pig) organs one hour after death (during which the body had warm ischaemia),[285][286] after reporting a similar method/system for reviving (pig) brains hours after death in 2019.[285][287] This could be used to preserve donor organs or for revival in medical emergencies.[285]
- [relevant?]Lab-made cartilage gel based on a synthetic hydrogel composite is found to have greater strength and wear resistance than natural cartilage, which could enable the durable resurfacing of damaged articulating joints.[288][289]
- [relevant?]A bioengineered cornea made from pig's skin is shown to restore vision to blind people. It can be mass-produced and stored for up to two years, unlike donated human corneas that are scarce and must be used within two weeks.[290][291]
- [relevant?]A weak spot in the spike protein of SARS-CoV-2 is described by researchers, which an antibody fragment called VH Ab6 can attach to, potentially neutralising all major variants of the virus.[292][293] On 11 August, researchers report a single antibody, SP1-77, that could potentially neutralize all known variants of the virus via a novel mechanism, not by not preventing the virus from binding to ACE2 receptors but by blocking it from fusing with host cells' membranes.[294][295]
- [relevant?]A university reports the first successful transplantation of an organoid into a human, first announced on 7 July,[296][additional citation(s) needed] with the underlying study being published in February.[297]
- [relevant?]Researchers report the development of a highly effective CRISPR-Cas9 genome editing method without expensive viral vectors, enabling e.g. novel anti-cancer CAR-T cell therapies.[298][299]
- [relevant?]Wastewater surveillance, which substantially expanded during the COVID-19 pandemic is used to detect monkeypox,[301][302] with one team of researchers describing their qualitative detection method.[300]
- A new malaria vaccine developed by the University of Oxford is shown to be ~80% effective at preventing the disease.[303][304]
- TIPs could be an effective countermeasure that reduces COVID-19 transmission.[305][306] A study adds to the accumulating research indicating postexposure antiviral
- the two first nasal COVID-19 vaccines which may (as boosters)[307] also reduce transmission[308][309] (sterilizing immunity).[308] India and China approve
- Nanoengineers report the development of biocompatible microalgae hybrid microrobots for active drug-delivery in the lungs and the gastrointestinal tract (GT). The microrobots are related to medical nanobots and proved effective in tests with mice.[310][311][312] A separate team reports the development of 'RoboCap', a robotic drug delivery capsule that enhances drug absorption by tunneling through the mucus layer in the GT.[313][314]
- engineered bacterial microbots for 'precision targeting'[315] is demonstrated to be effective for fighting cancer in mice.[316][317] A magnetical guidance system with
- laboratory-grown red blood cells transfused into people begins.[318][319] The first clinical trial of
- CRISPR-Cas9 gene editing tool for large edits without problematic double-stranded breaks is demonstrated, PASTE.[320][321] A new
- relevant?]Researchers report the development of a blood test, SOBA, for Alzheimer's screening via levels of toxic amyloid beta oligomers with sensitivity and specificity of apparently 99%.[322][323] A separate study reports another well-performing blood test to detect Alzheimer's disease via biomarker brain-derived tau.[324][325] [
2023
[edit]- Cellular bioengineers report the development of nonreplicating bacterial 'cyborg cells' (similar to artificial cells) using a novel approach, assembling a synthetic hydrogel polymer network as an artificial cytoskeleton inside the bacteria. The cells can resist stressors that would kill natural cells and e.g. invade cancer cells or potentially act as biosensors.[326][327]
- News outlets report on a study (Nov 22) demonstrating locust antennae implanted as biosensors into (bio-hybrid) robots for AI-interpreted machine olfaction.[328][329]
- Scientists review safety-by-design technology- and policy-based approaches to ensure biosafety and biosecurity to prevent engineered pathogen pandemics, such as sequence screening and biocontainment systems, some of which already implemented and part of regulations to some degree.[330][additional citation(s) needed]
- Researchers report the development of a biocomposite 3D printing ink, BactoInk, containing calcium carbonate-producing microorganisms which could be used for restoration, artificial reefs and potentially bone-repair.[331][332]
- The growing of electrodes in the living tissue of zebrafish (including in the brain) and medicinal leeches is demonstrated, using an injectable gel and the animals' own endogenous molecules to trigger the formation. The researchers claim their breakthrough enables "a new paradigm in bioelectronics."[333][334]
- Scientists coalesce recent developments brain organoids into a new field they term organoid intelligence (OI), seeking to harness OI for computing – as a novel type of AI – in an ethically responsible way. Networks of such miniature tissues could become functional using stimulus-response training or organoid-computer interfaces – to potentially become "more powerful than silicon-based computing" for a range of tasks – and could also be used for research of various pathophysiologies, brain development, human learning, memory and intelligence, and new therapeutic approaches against brain diseases.[335][336] using human
- Biological organoid intelligence, 'Brainoware', is demonstrated to solve computational tasks in a preprint, with implications for bioethics and potential bottlenecks and limits of nonbio-AI.[337][338]
- A bacterial hydrogenase enzyme, Huc, for biohydrogen energy from the air is reported.[339][340]
- A study reports a bacterial new PVC injection system-based way of protein delivery, one of the biggest unsolved problems[needs update] of gene editing.[341][342]
- Researchers demonstrate functional integration[broken anchor] of a magnetically steered microbot containing neurons, 'Mag-Neurobot', in a mouse "organotypic hippocampal slice" (OHS) as physical (semi-)artificial neurons.[343][344]
- Neuroengineers demonstrate induction of a torpor-like state in mice via ultrasound stimulation.[345]
- Researchers report in a preprint the CRISPR alternative Fanzor naturally present in eukaryotes with several potential advantages over CRISPR in genome editing, notably smaller size and higher selectiveness.[346][347] A separate team further demonstrates the potential of this class of genome editors.[348][349]
- A new method to deliver drugs into the inner ear is demonstrated with a gene-therapy against hearing loss in mice.[350]
- Researchers demonstrate encoding and storing data – small images – as DNA without new DNA synthesis by recording light exposure into bacterial DNA via optogenetic circuits. The 'biological camera' extends chemical and electrical interface techniques.[351][352]
- Scientists use CRISPR gene-editing to reduce the lignin content in poplar trees by as much as 50%, offering a potentially more sustainable method of fiber production.[353][354]
- Researchers report a production method for spider silk fibers from gene-edited transgenic silkworms for a sustainable alternative material six times stronger than Kevlar.[355]
- In 10 studies, researchers of the Sc2.0 project report yeast with a half-synthetic genome.[356][357]
- Researchers report the deep learning-based discovery of nearly 200 functionally diverse natural machineries for CRISPR gene editing.[358]
- Researchers demonstrate multicellular microbots grown from a human cell, "anthrobots", that can move around in tissues in vitro.[359]
- Notable innovations: a large language model (ProGen) that can generate functional protein sequences with a predictable function, with the input including tags specifying protein properties,[362] a deep-learning model (ZFDesign) for zinc finger design for any genomic target for gene- and epigenetic-editing,[363] a second biotech company commercializes sustainable MS mycelium protein after Quorn in 1983,[364] a biodegradable and biorecyclable glass,[365][366] nonalcoholic first powdered beer (Dryest Beer),[367] a phase-change materials embedded in wood-based energy-saving building material,[368][369] cultivated meat from extinct mammoths as demonstration of potential,[370] first yeast-based cow-free dairy (Remilk),[371] a method for fat tissue cultured meat,[372][373] an engineered probiotic against alcohol-induced damage,[374] exogenously administered bioengineered sensors that amplify urinary cancer biomarkers for detection,[375] an open source automated experimentation science platform (BacterAI) for predicting microbial metabolism with little data,[376] an open source transfer learning-based system (Geneformer) for predicting how networks of interconnected human genes control or affect the function of cells,[377] first approval for two cultured meat products in the U.S. and two of the first worldwide,[378] transgenic soya beans containing pig protein (Piggy Sooy) are reported,[379] a performant open source AI software for protein design (RFdiffusion) is introduced,[380] a viable real-time pathogen air quality (pAQ) sensor is demonstrated,[381] a CRISPR-free base editing system without guide RNA that enables also editing chloroplast and mitochondrial genomes with precision (CyDENT),[382] genetically engineered marine microorganism for breaking down PET in salt water,[383] taste-tested bioreactor-grown cultured coffee.[360]
Medical applications
[edit]- Researchers demonstrate the use of ants as biosensors to detect cancer via urine,[384][385] a mice-tested engineered probiotic against autoimmunity in the brain as in multiple sclerosis,[386] mice-tested engineered bacteria to detect cancer DNA,[387] 3D printed of hair follicles on lab-grown skin.[388]
- AI in drug development successes
- The world's first COVID-19 drug designed by generative AI is approved for human use, with clinical trials expected to begin in China. The new drug, ISM3312, is developed by Insilico Medicine.[389]
- A new AI algorithm developed by Baidu is shown to boost the antibody response of COVID-19 mRNA vaccines by 128 times.[390]
- AI is used to develop an experimental antibiotic called abaucin, which is shown to be effective against A. baumannii.[391][392]
- AI is used to find senolytics.[393][394]
- A science writer provides an overview of "the nascent industry of AI-designed drugs".[395]
- A new class of antibiotic candidates, able to kill methicillin-resistant Staphylococcus aureus (MRSA) is identified using explainable deep learning.[396][397]
- The first successful transplant of a functional cryopreserved mammalian kidney is reported. The study demonstrates a "nanowarming" technique for vitrification for up-to-100 days preservation of transplant organs.[398][399]
2024
[edit]- Notable innovation: rice grains as scaffolds containing cultured animal cells are demonstrated,[400][401] precision fermentation-derived beta-lactoglobulin is released as a substitute for whey protein amid growth of a nascent animal-free dairy industry.[402]
See also
[edit]2024 in science |
---|
Fields |
Technology |
Social sciences |
Paleontology |
Extraterrestrial environment |
Terrestrial environment |
Other/related |
- Bioeconomy
- Bioelectronics
- Biotechnology risk
- Working animal
- Synthetic biology
- Environmental impact of pesticides#Alternatives
- Bioethics#Issues
- Bioinformatics
- CRISPR gene editing#Recent events
- Nanobiotechnology
- Timeline of sustainable energy research 2020–present#Bioenergy and biotechnology
- Timeline of biology and organic chemistry#1990–present
- Timeline of the history of genetics
Medical
[edit]- Artificial intelligence in healthcare
- Diagnostic microbiology
- Gene therapy#2020s
- List of emerging technologies#Medical
- Regeneration in humans
- Timeline of human vaccines
- Timeline of medicine and medical technology#2000–2022
- Timeline of senescence research
References
[edit]- ^ a b "Highlights in the History of Biotechnology" (PDF). St Louis Science Center. Archived from the original (PDF) on 23 January 2013. Retrieved 27 December 2012.
- ^ "Agriculture in Ancient Greece". World History Encyclopedia. Archived from the original on 30 December 2012. Retrieved 27 December 2012.
- ^ "Biotechnology Timeline". Biotechnology Institute of Washington DC. Archived from the original on April 7, 2022. Retrieved 27 December 2012.
- ^ Ereky, Karl. (June 8, 1919). Biotechnologie der Fleisch-, Fett-, und Milcherzeugung im landwirtschaftlichen Grossbetriebe: für naturwissenschaftlich gebildete Landwirte verfasst. P. Parey – via Hathi Trust.
- ^ a b Nielsen, Jens; Tillegreen, Christian Brix; Petranovic, Dina (October 2022). "Innovation trends in industrial biotechnology". Trends in Biotechnology. 40 (10): 1160–1172. doi:10.1016/j.tibtech.2022.03.007. PMID 35459568.
- ^ "1973_Boyer". Genome News Network. Archived from the original on 20 September 2020. Retrieved 19 August 2015.
- ^ C A Hutchison, 3rd, S Phillips, M H Edgell, S Gillam, P Jahnke and M Smith (1978). "Mutagenesis at a specific position in a DNA sequence". J Biol Chem. 253 (18): 6551–6560. doi:10.1016/S0021-9258(19)46967-6. PMID 681366.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link) - ^ a b Clarke, Lionel; Kitney, Richard (2020-02-28). "Developing synthetic biology for industrial biotechnology applications". Biochemical Society Transactions. 48 (1): 113–122. doi:10.1042/BST20190349. ISSN 0300-5127. PMC 7054743. PMID 32077472.
- ^ Fingas, Jon (16 April 2019). "CRISPR gene editing has been used on humans in the US". Engadget. Archived from the original on 16 April 2019. Retrieved 16 April 2019.
- ^ Staff (17 April 2019). "CRISPR has been used to treat US cancer patients for the first time". MIT Technology Review. Archived from the original on 17 April 2019. Retrieved 17 April 2019.
- ^ Anzalone, Andrew V.; Randolph, Peyton B.; Davis, Jessie R.; Sousa, Alexander A.; Koblan, Luke W.; Levy, Jonathan M.; Chen, Peter J.; Wilson, Christopher; Newby, Gregory A.; Raguram, Aditya; Liu, David R. (21 October 2019). "Search-and-replace genome editing without double-strand breaks or donor DNA". Nature. 576 (7785): 149–157. Bibcode:2019Natur.576..149A. doi:10.1038/s41586-019-1711-4. PMC 6907074. PMID 31634902.
- ^ Gallagher, James (2019-10-21). "Prime editing: DNA tool could correct 89% of genetic defects". BBC News. Archived from the original on 2019-10-21. Retrieved 21 October 2019.
- ^ "Scientists Create New, More Powerful Technique To Edit Genes". NPR.org. Archived from the original on 21 October 2019. Retrieved 21 October 2019.
- ^ "Nanoparticle chomps away plaques that cause heart attacks". Michigan State University. 27 January 2020. Archived from the original on 29 January 2020. Retrieved 31 January 2020.
- ^ "Nanoparticle helps eat away deadly arterial plaque". New Atlas. 28 January 2020. Archived from the original on 1 March 2020. Retrieved 13 April 2020.
- ^ Flores, Alyssa M.; Hosseini-Nassab, Niloufar; Jarr, Kai-Uwe; Ye, Jianqin; Zhu, Xingjun; Wirka, Robert; Koh, Ai Leen; Tsantilas, Pavlos; Wang, Ying; Nanda, Vivek; Kojima, Yoko; Zeng, Yitian; Lotfi, Mozhgan; Sinclair, Robert; Weissman, Irving L.; Ingelsson, Erik; Smith, Bryan Ronain; Leeper, Nicholas J. (February 2020). "Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis". Nature Nanotechnology. 15 (2): 154–161. Bibcode:2020NatNa..15..154F. doi:10.1038/s41565-019-0619-3. PMC 7254969. PMID 31988506.
- ^ "Fundamental beliefs about atherosclerosis overturned: Complications of artery-hardening condition are number one killer worldwide". ScienceDaily. Archived from the original on 2020-06-29. Retrieved 2020-07-12.
- ^ "The top 10 causes of death". www.who.int. Archived from the original on 2020-06-05. Retrieved 2020-01-26.
- ^ "New CRISPR-based tool can probe and control several genetic circuits at once". phys.org. Archived from the original on 2 March 2020. Retrieved 8 March 2020.
- ^ Kempton, Hannah R.; Goudy, Laine E.; Love, Kasey S.; Qi, Lei S. (5 February 2020). "Multiple Input Sensing and Signal Integration Using a Split Cas12a System". Molecular Cell. 78 (1): 184–191.e3. doi:10.1016/j.molcel.2020.01.016. ISSN 1097-2765. PMID 32027839.
- ^ AFP (7 February 2020). "US Trial Shows 3 Cancer Patients Had Their Genomes Altered Safely by CRISPR". ScienceAlert. Archived from the original on 2020-02-08. Retrieved 2020-02-09.
- ^ "CRISPR-edited immune cells for fighting cancer passed a safety test". Science News. 6 February 2020. Archived from the original on 25 July 2020. Retrieved 13 July 2020.
- ^ "CRISPR-Edited Immune Cells Can Survive and Thrive After Infusion into Cancer Patients – PR News". www.pennmedicine.org. Archived from the original on 13 July 2020. Retrieved 13 July 2020.
- ^ Stadtmauer, Edward A.; Fraietta, Joseph A.; Davis, Megan M.; Cohen, Adam D.; Weber, Kristy L.; Lancaster, Eric; Mangan, Patricia A.; Kulikovskaya, Irina; Gupta, Minnal; Chen, Fang; Tian, Lifeng; Gonzalez, Vanessa E.; Xu, Jun; Jung, In-young; Melenhorst, J. Joseph; Plesa, Gabriela; Shea, Joanne; Matlawski, Tina; Cervini, Amanda; Gaymon, Avery L.; Desjardins, Stephanie; Lamontagne, Anne; Salas-Mckee, January; Fesnak, Andrew; Siegel, Donald L.; Levine, Bruce L.; Jadlowsky, Julie K.; Young, Regina M.; Chew, Anne; Hwang, Wei-Ting; Hexner, Elizabeth O.; Carreno, Beatriz M.; Nobles, Christopher L.; Bushman, Frederic D.; Parker, Kevin R.; Qi, Yanyan; Satpathy, Ansuman T.; Chang, Howard Y.; Zhao, Yangbing; Lacey, Simon F.; June, Carl H. (28 February 2020). "CRISPR-engineered T cells in patients with refractory cancer". Science. 367 (6481): eaba7365. doi:10.1126/science.aba7365. ISSN 0036-8075. PMC 11249135. PMID 32029687. S2CID 211048335.
- ^ "Biomaterial discovery enables 3-D printing of tissue-like vascular structures". phys.org. Archived from the original on 6 April 2020. Retrieved 5 April 2020.
- ^ Wu, Yuanhao; Okesola, Babatunde O.; Xu, Jing; Korotkin, Ivan; Berardo, Alice; Corridori, Ilaria; di Brocchetti, Francesco Luigi Pellerej; Kanczler, Janos; Feng, Jingyu; Li, Weiqi; Shi, Yejiao; Farafonov, Vladimir; Wang, Yiqiang; Thompson, Rebecca F.; Titirici, Maria-Magdalena; Nerukh, Dmitry; Karabasov, Sergey; Oreffo, Richard O. C.; Carlos Rodriguez-Cabello, Jose; Vozzi, Giovanni; Azevedo, Helena S.; Pugno, Nicola M.; Wang, Wen; Mata, Alvaro (4 March 2020). "Disordered protein-graphene oxide co-assembly and supramolecular biofabrication of functional fluidic devices". Nature Communications. 11 (1): 1182. Bibcode:2020NatCo..11.1182W. doi:10.1038/s41467-020-14716-z. ISSN 2041-1723. PMC 7055247. PMID 32132534.
- ^ "Doctors use gene editing tool Crispr inside body for first time". The Guardian. 4 March 2020. Archived from the original on 12 April 2020. Retrieved 6 April 2020.
- ^ "Doctors use CRISPR gene editing inside a person's body for first time". NBC News. Archived from the original on 6 March 2020. Retrieved 6 April 2020.
- ^ "Doctors try 1st CRISPR editing in the body for blindness". AP NEWS. 4 March 2020. Archived from the original on 6 April 2020. Retrieved 6 April 2020.
- ^ White, Franny. "OHSU performs first-ever CRISPR gene editing within human body". OHSU News. Retrieved 12 April 2020.
- ^ "Researchers establish new viable CRISPR-Cas12b system for plant genome engineering". phys.org. Archived from the original on 6 April 2020. Retrieved 6 April 2020.
- ^ Ming, Meiling; Ren, Qiurong; Pan, Changtian; He, Yao; Zhang, Yingxiao; Liu, Shishi; Zhong, Zhaohui; Wang, Jiaheng; Malzahn, Aimee A.; Wu, Jun; Zheng, Xuelian; Zhang, Yong; Qi, Yiping (March 2020). "CRISPR–Cas12b enables efficient plant genome engineering". Nature Plants. 6 (3): 202–208. Bibcode:2020NatPl...6..202M. doi:10.1038/s41477-020-0614-6. PMID 32170285. S2CID 212643374.
- ^ Levy, Steven. "Could Crispr Be Humanity's Next Virus Killer?". Wired. Archived from the original on 24 March 2020. Retrieved 25 March 2020.
- ^ "Biochemist Explains How CRISPR Can Be Used to Fight COVID-19". Amanpour & Company. Archived from the original on 30 April 2020. Retrieved 3 April 2020.
- ^ "Can Crispr technology attack the coronavirus? | Bioengineering". bioengineering.stanford.edu. 18 March 2020. Archived from the original on 14 July 2020. Retrieved 3 April 2020.
- ^ Abbott, Timothy R.; Dhamdhere, Girija; Liu, Yanxia; Lin, Xueqiu; Goudy, Laine; Zeng, Leiping; Chemparathy, Augustine; Chmura, Stephen; Heaton, Nicholas S.; Debs, Robert; Pande, Tara; Endy, Drew; Russa, Marie La; Lewis, David B.; Qi, Lei S. (14 March 2020). "Development of CRISPR as a prophylactic strategy to combat novel coronavirus and influenza". bioRxiv: 2020.03.13.991307. doi:10.1101/2020.03.13.991307.
- ^ "Scientists aim gene-targeting breakthrough against COVID-19". phys.org. Archived from the original on 17 June 2020. Retrieved 13 June 2020.
- ^ Abbott, Timothy R.; Dhamdhere, Girija; Liu, Yanxia; Lin, Xueqiu; Goudy, Laine; Zeng, Leiping; Chemparathy, Augustine; Chmura, Stephen; Heaton, Nicholas S.; Debs, Robert; Pande, Tara; Endy, Drew; Russa, Marie F. La; Lewis, David B.; Qi, Lei S. (14 May 2020). "Development of CRISPR as an Antiviral Strategy to Combat SARS-CoV-2 and Influenza". Cell. 181 (4): 865–876.e12. doi:10.1016/j.cell.2020.04.020. ISSN 0092-8674. PMC 7189862. PMID 32353252.
- ^ "New kind of CRISPR technology to target RNA, including RNA viruses like coronavirus". phys.org. Archived from the original on 5 April 2020. Retrieved 3 April 2020.
- ^ Wessels, Hans-Hermann; Méndez-Mancilla, Alejandro; Guo, Xinyi; Legut, Mateusz; Daniloski, Zharko; Sanjana, Neville E. (16 March 2020). "Massively parallel Cas13 screens reveal principles for guide RNA design". Nature Biotechnology. 38 (6): 722–727. doi:10.1038/s41587-020-0456-9. PMC 7294996. PMID 32518401.
- ^ "Scientists can now edit multiple genome fragments at a time". phys.org. Archived from the original on 7 April 2020. Retrieved 7 April 2020.
- ^ Gonatopoulos-Pournatzis, Thomas; Aregger, Michael; Brown, Kevin R.; Farhangmehr, Shaghayegh; Braunschweig, Ulrich; Ward, Henry N.; Ha, Kevin C. H.; Weiss, Alexander; Billmann, Maximilian; Durbic, Tanja; Myers, Chad L.; Blencowe, Benjamin J.; Moffat, Jason (16 March 2020). "Genetic interaction mapping and exon-resolution functional genomics with a hybrid Cas9–Cas12a platform". Nature Biotechnology. 38 (5): 638–648. doi:10.1038/s41587-020-0437-z. PMID 32249828. S2CID 212731918.
- ^ "Researchers achieve remote control of hormone release using magnetic nanoparticles". phys.org. Archived from the original on 24 April 2020. Retrieved 16 May 2020.
- ^ Rosenfeld, Dekel; Senko, Alexander W.; Moon, Junsang; Yick, Isabel; Varnavides, Georgios; Gregureć, Danijela; Koehler, Florian; Chiang, Po-Han; Christiansen, Michael G.; Maeng, Lisa Y.; Widge, Alik S.; Anikeeva, Polina (1 April 2020). "Transgene-free remote magnetothermal regulation of adrenal hormones". Science Advances. 6 (15): eaaz3734. Bibcode:2020SciA....6.3734R. doi:10.1126/sciadv.aaz3734. PMC 7148104. PMID 32300655.
- ^ "Predicting the evolution of genetic mutations". phys.org. Archived from the original on 26 April 2020. Retrieved 16 May 2020.
- ^ Zhou, Juannan; McCandlish, David M. (14 April 2020). "Minimum epistasis interpolation for sequence-function relationships". Nature Communications. 11 (1): 1782. Bibcode:2020NatCo..11.1782Z. doi:10.1038/s41467-020-15512-5. PMC 7156698. PMID 32286265.
- ^ "Bactericidal nanomachine: Researchers reveal the mechanisms behind a natural bacteria killer". phys.org. Archived from the original on 29 April 2020. Retrieved 17 May 2020.
- ^ Ge, Peng; Scholl, Dean; Prokhorov, Nikolai S.; Avaylon, Jaycob; Shneider, Mikhail M.; Browning, Christopher; Buth, Sergey A.; Plattner, Michel; Chakraborty, Urmi; Ding, Ke; Leiman, Petr G.; Miller, Jeff F.; Zhou, Z. Hong (April 2020). "Action of a minimal contractile bactericidal nanomachine". Nature. 580 (7805): 658–662. Bibcode:2020Natur.580..658G. doi:10.1038/s41586-020-2186-z. PMC 7513463. PMID 32350467.
- ^ "Scientists create tiny devices that work like the human brain". The Independent. 20 April 2020. Archived from the original on 24 April 2020. Retrieved 17 May 2020.
- ^ "Researchers unveil electronics that mimic the human brain in efficient learning". phys.org. Archived from the original on 28 May 2020. Retrieved 17 May 2020.
- ^ Fu, Tianda; Liu, Xiaomeng; Gao, Hongyan; Ward, Joy E.; Liu, Xiaorong; Yin, Bing; Wang, Zhongrui; Zhuo, Ye; Walker, David J. F.; Joshua Yang, J.; Chen, Jianhan; Lovley, Derek R.; Yao, Jun (20 April 2020). "Bioinspired bio-voltage memristors". Nature Communications. 11 (1): 1861. Bibcode:2020NatCo..11.1861F. doi:10.1038/s41467-020-15759-y. PMC 7171104. PMID 32313096.
- ^ "Sustainable light achieved in living plants". phys.org. Archived from the original on 27 May 2020. Retrieved 18 May 2020.
- ^ "Scientists use mushroom DNA to produce permanently-glowing plants". New Atlas. 28 April 2020. Archived from the original on 9 May 2020. Retrieved 18 May 2020.
- ^ "Scientists create glowing plants using mushroom genes". The Guardian. 27 April 2020. Archived from the original on 10 May 2020. Retrieved 18 May 2020.
- ^ Wehner, Mike (29 April 2020). "Scientists use bioluminescent mushrooms to create glow-in-the-dark plants". New York Post. Archived from the original on 24 May 2020. Retrieved 18 May 2020.
- ^ Woodyatt, Amy. "Scientists create glow-in-the-dark plants". CNN. Archived from the original on 20 May 2020. Retrieved 23 May 2020.
- ^ Mitiouchkina, Tatiana; Mishin, Alexander S.; Somermeyer, Louisa Gonzalez; Markina, Nadezhda M.; Chepurnyh, Tatiana V.; Guglya, Elena B.; Karataeva, Tatiana A.; Palkina, Kseniia A.; Shakhova, Ekaterina S.; Fakhranurova, Liliia I.; Chekova, Sofia V.; Tsarkova, Aleksandra S.; Golubev, Yaroslav V.; Negrebetsky, Vadim V.; Dolgushin, Sergey A.; Shalaev, Pavel V.; Shlykov, Dmitry; Melnik, Olesya A.; Shipunova, Victoria O.; Deyev, Sergey M.; Bubyrev, Andrey I.; Pushin, Alexander S.; Choob, Vladimir V.; Dolgov, Sergey V.; Kondrashov, Fyodor A.; Yampolsky, Ilia V.; Sarkisyan, Karen S. (27 April 2020). "Plants with genetically encoded autoluminescence". Nature Biotechnology. 38 (8): 944–946. doi:10.1038/s41587-020-0500-9. PMC 7610436. PMID 32341562. S2CID 216559981.
- ^ "New technique makes thousands of semi-synthetic photosynthesis cells". New Atlas. 11 May 2020. Archived from the original on 25 May 2020. Retrieved 12 June 2020.
- ^ Barras, Colin (7 May 2020). "Cyber-spinach turns sunlight into sugar". Nature. doi:10.1038/d41586-020-01396-4. PMID 32393873. S2CID 218598753.
- ^ "Researchers develop an artificial chloroplast". phys.org. Archived from the original on 12 June 2020. Retrieved 12 June 2020.
- ^ Miller, Tarryn E.; Beneyton, Thomas; Schwander, Thomas; Diehl, Christoph; Girault, Mathias; McLean, Richard; Chotel, Tanguy; Claus, Peter; Cortina, Niña Socorro; Baret, Jean-Christophe; Erb, Tobias J. (8 May 2020). "Light-powered CO2 fixation in a chloroplast mimic with natural and synthetic parts" (PDF). Science. 368 (6491): 649–654. Bibcode:2020Sci...368..649M. doi:10.1126/science.aaz6802. PMC 7610767. PMID 32381722. S2CID 218552008.
- ^ "Synthetic red blood cells mimic natural ones, and have new abilities". phys.org. Archived from the original on 13 June 2020. Retrieved 13 June 2020.
- ^ Guo, Jimin; Agola, Jacob Ongudi; Serda, Rita; Franco, Stefan; Lei, Qi; Wang, Lu; Minster, Joshua; Croissant, Jonas G.; Butler, Kimberly S.; Zhu, Wei; Brinker, C. Jeffrey (11 May 2020). "Biomimetic Rebuilding of Multifunctional Red Blood Cells: Modular Design Using Functional Components". ACS Nano. 14 (7): 7847–7859. doi:10.1021/acsnano.9b08714. OSTI 1639054. PMID 32391687. S2CID 218584795.
- ^ Page, Michael Le. "Three people with inherited diseases successfully treated with CRISPR". New Scientist. Archived from the original on 26 June 2020. Retrieved 1 July 2020.
- ^ "More early data revealed from landmark CRISPR gene editing human trial". New Atlas. 17 June 2020. Archived from the original on 23 June 2020. Retrieved 1 July 2020.
- ^ "A Year In, 1st Patient To Get Gene Editing For Sickle Cell Disease Is Thriving". NPR.org. Archived from the original on 30 June 2020. Retrieved 1 July 2020.
- ^ "CRISPR Therapeutics and Vertex Announce New Clinical Data for Investigational Gene-Editing Therapy CTX001™ in Severe Hemoglobinopathies at the 25th Annual European Hematology Association (EHA) Congress | CRISPR Therapeutics". crisprtx.gcs-web.com. Archived from the original on 28 June 2020. Retrieved 1 July 2020.
- ^ "The powerhouses inside cells have been gene-edited for the first time". New Scientist. 8 July 2020. Archived from the original on 14 July 2020. Retrieved 12 July 2020.
- ^ Mok, Beverly Y.; de Moraes, Marcos H.; Zeng, Jun; Bosch, Dustin E.; Kotrys, Anna V.; Raguram, Aditya; Hsu, FoSheng; Radey, Matthew C.; Peterson, S. Brook; Mootha, Vamsi K.; Mougous, Joseph D.; Liu, David R. (July 2020). "A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing". Nature. 583 (7817): 631–637. Bibcode:2020Natur.583..631M. doi:10.1038/s41586-020-2477-4. ISSN 1476-4687. PMC 7381381. PMID 32641830.
- ^ a b "Spider silk made by photosynthetic bacteria". phys.org. Archived from the original on 7 August 2020. Retrieved 16 August 2020.
- ^ Foong, Choon Pin; Higuchi-Takeuchi, Mieko; Malay, Ali D.; Oktaviani, Nur Alia; Thagun, Chonprakun; Numata, Keiji (2020-07-08). "A marine photosynthetic microbial cell factory as a platform for spider silk production". Communications Biology. 3 (1). Springer Science and Business Media LLC: 357. doi:10.1038/s42003-020-1099-6. ISSN 2399-3642. PMC 7343832. PMID 32641733. Text and images are available under a Creative Commons Attribution 4.0 International License Archived 2017-10-16 at the Wayback Machine.
- ^ "Brain benefits of exercise can be gained with a single protein". medicalxpress.com. Archived from the original on 20 August 2020. Retrieved 18 August 2020.
- ^ Horowitz, Alana M.; Fan, Xuelai; Bieri, Gregor; Smith, Lucas K.; Sanchez-Diaz, Cesar I.; Schroer, Adam B.; Gontier, Geraldine; Casaletto, Kaitlin B.; Kramer, Joel H.; Williams, Katherine E.; Villeda, Saul A. (10 July 2020). "Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain". Science. 369 (6500): 167–173. Bibcode:2020Sci...369..167H. doi:10.1126/science.aaw2622. ISSN 0036-8075. PMC 7879650. PMID 32646997. S2CID 220428681.
- ^ "Researchers discover 2 paths of aging and new insights on promoting healthspan". phys.org. Archived from the original on 13 August 2020. Retrieved 17 August 2020.
- ^ Li, Yang; Jiang, Yanfei; Paxman, Julie; o'Laughlin, Richard; Klepin, Stephen; Zhu, Yuelian; Pillus, Lorraine; Tsimring, Lev S.; Hasty, Jeff; Hao, Nan (2020). "A programmable fate decision landscape underliessingle-cell aging in yeast". Science. 369 (6501): 325–329. Bibcode:2020Sci...369..325L. doi:10.1126/science.aax9552. PMC 7437498. PMID 32675375.
- ^ "Machine learning reveals recipe for building artificial proteins". phys.org. Archived from the original on 3 August 2020. Retrieved 17 August 2020.
- ^ Russ, William P.; Figliuzzi, Matteo; Stocker, Christian; Barrat-Charlaix, Pierre; Socolich, Michael; Kast, Peter; Hilvert, Donald; Monasson, Remi; Cocco, Simona; Weigt, Martin; Ranganathan, Rama (2020). "An evolution-based model for designing chorismatemutase enzymes". Science. 369 (6502): 440–445. Bibcode:2020Sci...369..440R. doi:10.1126/science.aba3304. PMID 32703877. S2CID 220714458.
- ^ "Quest - Article - Update: ACE-031 Clinical Trials in Duchenne MD". Muscular Dystrophy Association. 6 January 2016. Archived from the original on 21 September 2020. Retrieved 16 October 2020.
- ^ Attie, Kenneth M.; Borgstein, Niels G.; Yang, Yijun; Condon, Carolyn H.; Wilson, Dawn M.; Pearsall, Amelia E.; Kumar, Ravi; Willins, Debbie A.; Seehra, Jas S.; Sherman, Matthew L. (2013). "A single ascending-dose study of muscle regulator ace-031 in healthy volunteers". Muscle & Nerve. 47 (3): 416–423. doi:10.1002/mus.23539. ISSN 1097-4598. PMID 23169607. S2CID 19956237. Retrieved 16 October 2020.
- ^ "'Mighty mice' stay musclebound in space, boon for astronauts". phys.org. Archived from the original on 1 October 2020. Retrieved 8 October 2020.
- ^ Lee, Se-Jin; Lehar, Adam; Meir, Jessica U.; Koch, Christina; Morgan, Andrew; Warren, Lara E.; Rydzik, Renata; Youngstrom, Daniel W.; Chandok, Harshpreet; George, Joshy; Gogain, Joseph; Michaud, Michael; Stoklasek, Thomas A.; Liu, Yewei; Germain-Lee, Emily L. (22 September 2020). "Targeting myostatin/activin A protects against skeletal muscle and bone loss during spaceflight". Proceedings of the National Academy of Sciences. 117 (38): 23942–23951. Bibcode:2020PNAS..11723942L. doi:10.1073/pnas.2014716117. ISSN 0027-8424. PMC 7519220. PMID 32900939.
- ^ "Biologists create new genetic systems to neutralize gene drives". phys.org. Archived from the original on 9 October 2020. Retrieved 8 October 2020.
- ^ Xu, Xiang-Ru Shannon; Bulger, Emily A.; Gantz, Valentino M.; Klanseck, Carissa; Heimler, Stephanie R.; Auradkar, Ankush; Bennett, Jared B.; Miller, Lauren Ashley; Leahy, Sarah; Juste, Sara Sanz; Buchman, Anna; Akbari, Omar S.; Marshall, John M.; Bier, Ethan (18 September 2020). "Active Genetic Neutralizing Elements for Halting or Deleting Gene Drives". Molecular Cell. 80 (2): 246–262.e4. doi:10.1016/j.molcel.2020.09.003. ISSN 1097-2765. PMC 10962758. PMID 32949493. S2CID 221806864.
- ^ Carrington, Damian (28 September 2020). "New super-enzyme eats plastic bottles six times faster". The Guardian. Archived from the original on 12 October 2020. Retrieved 12 October 2020.
- ^ "Plastic-eating enzyme 'cocktail' heralds new hope for plastic waste". phys.org. Archived from the original on 11 October 2020. Retrieved 12 October 2020.
- ^ Knott, Brandon C.; Erickson, Erika; Allen, Mark D.; Gado, Japheth E.; Graham, Rosie; Kearns, Fiona L.; Pardo, Isabel; Topuzlu, Ece; Anderson, Jared J.; Austin, Harry P.; Dominick, Graham; Johnson, Christopher W.; Rorrer, Nicholas A.; Szostkiewicz, Caralyn J.; Copié, Valérie; Payne, Christina M.; Woodcock, H. Lee; Donohoe, Bryon S.; Beckham, Gregg T.; McGeehan, John E. (24 September 2020). "Characterization and engineering of a two-enzyme system for plastics depolymerization". Proceedings of the National Academy of Sciences. 117 (41): 25476–25485. Bibcode:2020PNAS..11725476K. doi:10.1073/pnas.2006753117. ISSN 0027-8424. PMC 7568301. PMID 32989159. Text and images are available under a Creative Commons Attribution 4.0 International License Archived 2017-10-16 at the Wayback Machine.
- ^ Wu, Katherine J.; Peltier, Elian (7 October 2020). "Nobel Prize in Chemistry Awarded to 2 Scientists for Work on Genome Editing - Emmanuelle Charpentier and Jennifer A. Doudna developed the Crispr tool, which can alter the DNA of animals, plants and microorganisms with high precision". The New York Times. Archived from the original on 8 October 2020. Retrieved 7 October 2020.
- ^ a b Cockell, Charles S.; Santomartino, Rosa; Finster, Kai; Waajen, Annemiek C.; Eades, Lorna J.; Moeller, Ralf; Rettberg, Petra; Fuchs, Felix M.; Van Houdt, Rob; Leys, Natalie; Coninx, Ilse; Hatton, Jason; Parmitano, Luca; Krause, Jutta; Koehler, Andrea; Caplin, Nicol; Zuijderduijn, Lobke; Mariani, Alessandro; Pellari, Stefano S.; Carubia, Fabrizio; Luciani, Giacomo; Balsamo, Michele; Zolesi, Valfredo; Nicholson, Natasha; Loudon, Claire-Marie; Doswald-Winkler, Jeannine; Herová, Magdalena; Rattenbacher, Bernd; Wadsworth, Jennifer; Craig Everroad, R.; Demets, René (10 November 2020). "Space station biomining experiment demonstrates rare earth element extraction in microgravity and Mars gravity". Nature Communications. 11 (1): 5523. Bibcode:2020NatCo..11.5523C. doi:10.1038/s41467-020-19276-w. ISSN 2041-1723. PMC 7656455. PMID 33173035. Available under CC BY 4.0 Archived 2017-10-16 at the Wayback Machine.
- ^ Crane, Leah. "Asteroid-munching microbes could mine materials from space rocks". New Scientist. Archived from the original on 7 December 2020. Retrieved 9 December 2020.
- ^ "TAU breakthrough may increase life expectancy in brain and ovarian cancers". Tel Aviv University. 18 November 2020. Archived from the original on 22 November 2020. Retrieved 23 November 2020.
- ^ Rosenblum, Daniel; Gutkin, Anna; Kedmi, Ranit; Ramishetti, Srinivas; Veiga, Nuphar; Jacobi, Ashley M.; Schubert, Mollie S.; Friedmann-Morvinski, Dinorah; Cohen, Zvi R.; Behlke, Mark A.; Lieberman, Judy; Peer, Dan (1 November 2020). "CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy". Science Advances. 6 (47): eabc9450. Bibcode:2020SciA....6.9450R. doi:10.1126/sciadv.abc9450. ISSN 2375-2548. PMC 7673804. PMID 33208369. S2CID 227068531.
- ^ a b "Research creates hydrogen-producing living droplets, paving way for alternative future energy source". phys.org. Archived from the original on 16 December 2020. Retrieved 9 December 2020.
- ^ Xu, Zhijun; Wang, Shengliang; Zhao, Chunyu; Li, Shangsong; Liu, Xiaoman; Wang, Lei; Li, Mei; Huang, Xin; Mann, Stephen (25 November 2020). "Photosynthetic hydrogen production by droplet-based microbial micro-reactors under aerobic conditions". Nature Communications. 11 (1): 5985. Bibcode:2020NatCo..11.5985X. doi:10.1038/s41467-020-19823-5. ISSN 2041-1723. PMC 7689460. PMID 33239636. Available under CC BY 4.0 Archived 2017-10-16 at the Wayback Machine.
- ^ a b "One of biology's biggest mysteries 'largely solved' by AI". BBC News. 30 November 2020. Archived from the original on 30 November 2020. Retrieved 30 November 2020.
- ^ "DeepMind AI cracks 50-year-old problem of protein folding". The Guardian. 30 November 2020. Archived from the original on 30 November 2020. Retrieved 30 November 2020.
- ^ "AlphaFold: a solution to a 50-year-old grand challenge in biology". DeepMind. 30 November 2020. Archived from the original on 30 November 2020. Retrieved 30 November 2020.
- ^ Shanker, Deena (October 22, 2019). "These $50 Chicken Nuggets Were Grown in a Lab". Bloomberg.com. Archived from the original on February 25, 2020. Retrieved February 27, 2020.
- ^ Corbyn, Zoë (January 19, 2020). "Out of the lab and into your frying pan: the advance of cultured meat". The Guardian. Archived from the original on February 11, 2020. Retrieved February 27, 2020.
- ^ Ives, Mike (2 December 2020). "Singapore Approves a Lab-Grown Meat Product, a Global First". The New York Times. Archived from the original on 22 January 2021. Retrieved 16 January 2021.
- ^ "Scientists build whole functioning thymus from human cells". Francis Crick Institute. 11 December 2020. Archived from the original on 14 December 2020. Retrieved 14 December 2020.
- ^ Campinoti, Sara; Gjinovci, Asllan; Ragazzini, Roberta; Zanieri, Luca; Ariza-McNaughton, Linda; Catucci, Marco; Boeing, Stefan; Park, Jong-Eun; Hutchinson, John C.; Muñoz-Ruiz, Miguel; Manti, Pierluigi G.; Vozza, Gianluca; Villa, Carlo E.; Phylactopoulos, Demetra-Ellie; Maurer, Constance; Testa, Giuseppe; Stauss, Hans J.; Teichmann, Sarah A.; Sebire, Neil J.; Hayday, Adrian C.; Bonnet, Dominique; Bonfanti, Paola (11 December 2020). "Reconstitution of a functional human thymus by postnatal stromal progenitor cells and natural whole-organ scaffolds". Nature Communications. 11 (1): 6372. Bibcode:2020NatCo..11.6372C. doi:10.1038/s41467-020-20082-7. ISSN 2041-1723. PMC 7732825. PMID 33311516. Available under CC BY 4.0 Archived 2017-10-16 at the Wayback Machine.
- ^ "Gene-editing produces tenfold increase in superbug slaying antibiotics". EurekAlert!. 12 January 2021. Archived from the original on 13 January 2021. Retrieved 13 January 2021.
- ^ Devine, Rebecca; McDonald, Hannah P.; Qin, Zhiwei; Arnold, Corinne J.; Noble, Katie; Chandra, Govind; Wilkinson, Barrie; Hutchings, Matthew I. (12 January 2021). "Re-wiring the regulation of the formicamycin biosynthetic gene cluster to enable the development of promising antibacterial compounds". Cell Chemical Biology. 28 (4): 515–523.e5. doi:10.1016/j.chembiol.2020.12.011. ISSN 2451-9456. PMC 8062789. PMID 33440167.
- ^ "Scientists use lipid nanoparticles to precisely target gene editing to the liver". EurekAlert!. 1 March 2021. Retrieved 2 March 2021.
- ^ Qiu, Min; Glass, Zachary; Chen, Jinjin; Haas, Mary; Jin, Xin; Zhao, Xuewei; Rui, Xuehui; Ye, Zhongfeng; Li, Yamin; Zhang, Feng; Xu, Qiaobing (9 March 2021). "Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of Angptl3". Proceedings of the National Academy of Sciences. 118 (10): e2020401118. Bibcode:2021PNAS..11820401Q. doi:10.1073/pnas.2020401118. ISSN 0027-8424. PMC 7958351. PMID 33649229.
- ^ "Unique CRISPR gene therapy offers opioid-free chronic pain treatment". New Atlas. 11 March 2021. Retrieved 18 April 2021.
- ^ Moreno, Ana M.; Alemán, Fernando; Catroli, Glaucilene F.; Hunt, Matthew; Hu, Michael; Dailamy, Amir; Pla, Andrew; Woller, Sarah A.; Palmer, Nathan; Parekh, Udit; McDonald, Daniella; Roberts, Amanda J.; Goodwill, Vanessa; Dryden, Ian; Hevner, Robert F.; Delay, Lauriane; Santos, Gilson Gonçalves dos; Yaksh, Tony L.; Mali, Prashant (10 March 2021). "Long-lasting analgesia via targeted in situ repression of NaV1.7 in mice". Science Translational Medicine. 13 (584): eaay9056. doi:10.1126/scitranslmed.aay9056. ISSN 1946-6234. PMC 8830379. PMID 33692134. S2CID 232170826.
- ^ Bowler, Jacinta (16 March 2021). "Microbes Unknown to Science Discovered on The International Space Station". ScienceAlert. Retrieved 16 March 2021.
- ^ Bijlani, Swati; Singh, Nitin K.; Eedara, V. V. Ramprasad; Podile, Appa Rao; Mason, Christopher E.; Wang, Clay C. C.; Venkateswaran, Kasthuri (2021). "Methylobacterium ajmalii sp. nov., Isolated From the International Space Station". Frontiers in Microbiology. 12: 639396. doi:10.3389/fmicb.2021.639396. ISSN 1664-302X. PMC 8005752. PMID 33790880. Available under CC BY 4.0.
- ^ Lewis, Tanya. "Slovakia Offers a Lesson in How Rapid Testing Can Fight COVID". Scientific American. Retrieved 19 April 2021.
- ^ Pavelka, Martin; Van-Zandvoort, Kevin; Abbott, Sam; Sherratt, Katharine; Majdan, Marek; Group5, CMMID COVID-19 working; Analýz, Inštitút Zdravotných; Jarčuška, Pavol; Krajčí, Marek; Flasche, Stefan; Funk, Sebastian (23 March 2021). "The impact of population-wide rapid antigen testing on SARS-CoV-2 prevalence in Slovakia". Science. 372 (6542): 635–641. Bibcode:2021Sci...372..635P. doi:10.1126/science.abf9648. ISSN 0036-8075. PMC 8139426. PMID 33758017.
{{cite journal}}
: CS1 maint: numeric names: authors list (link) - ^ "A third of global farmland at 'high' pesticide pollution risk". phys.org. Retrieved 22 April 2021.
- ^ Tang, Fiona H. M.; Lenzen, Manfred; McBratney, Alexander; Maggi, Federico (April 2021). "Risk of pesticide pollution at the global scale". Nature Geoscience. 14 (4): 206–210. Bibcode:2021NatGe..14..206T. doi:10.1038/s41561-021-00712-5. ISSN 1752-0908.
- ^ "New, reversible CRISPR method can control gene expression while leaving underlying DNA sequence unchanged". phys.org. Retrieved 10 May 2021.
- ^ Nuñez, James K.; Chen, Jin; Pommier, Greg C.; Cogan, J. Zachery; Replogle, Joseph M.; Adriaens, Carmen; Ramadoss, Gokul N.; Shi, Quanming; Hung, King L.; Samelson, Avi J.; Pogson, Angela N.; Kim, James Y. S.; Chung, Amanda; Leonetti, Manuel D.; Chang, Howard Y.; Kampmann, Martin; Bernstein, Bradley E.; Hovestadt, Volker; Gilbert, Luke A.; Weissman, Jonathan S. (29 April 2021). "Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing". Cell. 184 (9): 2503–2519.e17. doi:10.1016/j.cell.2021.03.025. ISSN 0092-8674. PMC 8376083. PMID 33838111.
- ^ Subbaraman, Nidhi (15 April 2021). "First monkey–human embryos reignite debate over hybrid animals - The chimaeras lived up to 19 days — but some scientists question the need for such research". Nature. Retrieved 16 April 2021.
- ^ Wells, Sarah (15 April 2021). "Researchers Generate Human-Monkey Chimeric Embryos - Don't worry, there are not human-monkey babies — yet". Inverse. Retrieved 16 April 2021.
- ^ Tan, Tao; et al. (15 April 2021). "Chimeric contribution of human extended pluripotent stem cells to monkey embryos ex vivo". cell. 184 (8): 2020–2032.e14. doi:10.1016/j.cell.2021.03.020. ISSN 0092-8674. PMID 33861963. S2CID 233247345.
- ^ "Malaria vaccine hailed as potential breakthrough". BBC News. April 23, 2021. Retrieved April 23, 2021.
- ^ Datoo, Mehreen S.; Natama, Magloire H.; Somé, Athanase; Traoré, Ousmane; Rouamba, Toussaint; Bellamy, Duncan; Yameogo, Prisca; Valia, Daniel; Tegneri, Moubarak; Ouedraogo, Florence; Soma, Rachidatou; Sawadogo, Seydou; Sorgho, Faizatou; Derra, Karim; Rouamba, Eli; Orindi, Benedict; Lopez, Fernando Ramos; Flaxman, Amy; Cappuccini, Federica; Kailath, Reshma; Elias, Sean; Mukhopadhyay, Ekta; Noe, Andres; Cairns, Matthew; Lawrie, Alison; Roberts, Rachel; Valéa, Innocent; Sorgho, Hermann; Williams, Nicola; Glenn, Gregory; Fries, Louis; Reimer, Jenny; Ewer, Katie J.; Shaligram, Umesh; Hill, Adrian V. S.; Tinto, Halidou (5 May 2021). "Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial". The Lancet. 397 (10287): 1809–1818. doi:10.1016/S0140-6736(21)00943-0. ISSN 0140-6736. PMC 8121760. PMID 33964223. Available under CC BY 4.0.
- ^ "Scientists Gene-Hacked Monkeys to Fix Their Cholesterol". Futurism. Retrieved 13 June 2021.
- ^ Musunuru, Kiran; et al. (May 2021). "In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates". Nature. 593 (7859): 429–434. Bibcode:2021Natur.593..429M. doi:10.1038/s41586-021-03534-y. ISSN 1476-4687. PMID 34012082. S2CID 234790939. Retrieved 13 June 2021.
- ^ Zimmer, Carl (2021-05-24). "Scientists Partially Restored a Blind Man's Sight With New Gene Therapy". The New York Times. Retrieved 13 June 2021.
- ^ Sahel, José-Alain; Boulanger-Scemama, Elise; Pagot, Chloé; Arleo, Angelo; Galluppi, Francesco; Martel, Joseph N.; Esposti, Simona Degli; Delaux, Alexandre; de Saint Aubert, Jean-Baptiste; de Montleau, Caroline; Gutman, Emmanuel; Audo, Isabelle; Duebel, Jens; Picaud, Serge; Dalkara, Deniz; Blouin, Laure; Taiel, Magali; Roska, Botond (2021-05-24). "Partial recovery of visual function in a blind patient after optogenetic therapy". Nature Medicine. 27 (7): 1223–1229. doi:10.1038/s41591-021-01351-4. ISSN 1546-170X. PMID 34031601.
- ^ "Resetting the biological clock by flipping a switch". phys.org. Retrieved 14 June 2021.
- ^ Kolarski, Dušan; Miró-Vinyals, Carla; Sugiyama, Akiko; Srivastava, Ashutosh; Ono, Daisuke; Nagai, Yoshiko; Iida, Mui; Itami, Kenichiro; Tama, Florence; Szymanski, Wiktor; Hirota, Tsuyoshi; Feringa, Ben L. (2021-05-26). "Reversible modulation of circadian time with chronophotopharmacology". Nature Communications. 12 (1): 3164. Bibcode:2021NatCo..12.3164K. doi:10.1038/s41467-021-23301-x. ISSN 2041-1723. PMC 8155176. PMID 34039965. Available under CC BY 4.0.
- ^ Baylor College of Medicine (29 May 2021). "Biologists Construct a "Periodic Table" for Cell Nuclei – And Discover Something Strange, Baffling and Unexpected". ScioTechDaily. Retrieved 29 May 2021.
- ^ Hoencamp, Claire; et al. (28 May 2021). "3D genomics across the tree of life reveals condensin II as a determinant of architecture type". Science. 372 (6545): 984–989. doi:10.1126/science.abe2218. PMC 8172041. PMID 34045355.
- ^ "'Vegan spider silk' provides sustainable alternative to single-use plastics". phys.org. Retrieved 11 July 2021.
- ^ Kamada, Ayaka; Rodriguez-Garcia, Marc; Ruggeri, Francesco Simone; Shen, Yi; Levin, Aviad; Knowles, Tuomas P. J. (10 June 2021). "Controlled self-assembly of plant proteins into high-performance multifunctional nanostructured films". Nature Communications. 12 (1): 3529. Bibcode:2021NatCo..12.3529K. doi:10.1038/s41467-021-23813-6. ISSN 2041-1723. PMC 8192951. PMID 34112802.
- ^ KaiserJun. 26, Jocelyn (26 June 2021). "CRISPR injected into the blood treats a genetic disease for first time". Science | AAAS. Retrieved 11 July 2021.
{{cite news}}
: CS1 maint: numeric names: authors list (link) - ^ Gillmore, Julian D.; Gane, Ed; Taubel, Jorg; Kao, Justin; Fontana, Marianna; Maitland, Michael L.; Seitzer, Jessica; O'Connell, Daniel; Walsh, Kathryn R.; Wood, Kristy; Phillips, Jonathan; Xu, Yuanxin; Amaral, Adam; Boyd, Adam P.; Cehelsky, Jeffrey E.; McKee, Mark D.; Schiermeier, Andrew; Harari, Olivier; Murphy, Andrew; Kyratsous, Christos A.; Zambrowicz, Brian; Soltys, Randy; Gutstein, David E.; Leonard, John; Sepp-Lorenzino, Laura; Lebwohl, David (26 June 2021). "CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis". New England Journal of Medicine. 385 (6): 493–502. doi:10.1056/NEJMoa2107454. PMID 34215024. S2CID 235722446.
- ^ "Face masks that can diagnose COVID-19". medicalxpress.com. Retrieved 11 July 2021.
- ^ Nguyen, Peter Q.; Soenksen, Luis R.; Donghia, Nina M.; Angenent-Mari, Nicolaas M.; de Puig, Helena; Huang, Ally; Lee, Rose; Slomovic, Shimyn; Galbersanini, Tommaso; Lansberry, Geoffrey; Sallum, Hani M.; Zhao, Evan M.; Niemi, James B.; Collins, James J. (28 June 2021). "Wearable materials with embedded synthetic biology sensors for biomolecule detection". Nature Biotechnology. 39 (11): 1366–1374. doi:10.1038/s41587-021-00950-3. hdl:1721.1/131278. ISSN 1546-1696. PMID 34183860. S2CID 235673261.
- ^ "Growing food with air and solar power: More efficient than planting crops". phys.org. Retrieved 11 July 2021.
- ^ Leger, Dorian; Matassa, Silvio; Noor, Elad; Shepon, Alon; Milo, Ron; Bar-Even, Arren (29 June 2021). "Photovoltaic-driven microbial protein production can use land and sunlight more efficiently than conventional crops". Proceedings of the National Academy of Sciences. 118 (26): e2015025118. Bibcode:2021PNAS..11815025L. doi:10.1073/pnas.2015025118. ISSN 0027-8424. PMC 8255800. PMID 34155098. S2CID 235595143.
- ^ Spary, Sara. "Cows' stomachs can break down plastic, study finds". CNN. Retrieved 14 August 2021.
- ^ Quartinello, Felice; Kremser, Klemens; Schoen, Herta; Tesei, Donatella; Ploszczanski, Leon; Nagler, Magdalena; Podmirseg, Sabine M.; Insam, Heribert; Piñar, Guadalupe; Sterflingler, Katja; Ribitsch, Doris; Guebitz, Georg M. (2021). "Together Is Better: The Rumen Microbial Community as Biological Toolbox for Degradation of Synthetic Polyesters". Frontiers in Bioengineering and Biotechnology. 9. doi:10.3389/fbioe.2021.684459. ISSN 2296-4185.
- ^ "Scientists developing contraceptive that stops sperm in its tracks". ScienceDaily. Retrieved 21 September 2021.
- ^ Shrestha, Bhawana; Schaefer, Alison; Zhu, Yong; Saada, Jamal; Jacobs, Timothy M.; Chavez, Elizabeth C.; Omsted, Stuart S.; Cruz-Teran, Carlos A.; Vaca, Gabriela Baldeon; Vincent, Kathleen; Moench, Thomas R.; Lai, Samuel K. (11 August 2021). "Engineering sperm-binding IgG antibodies for the development of an effective nonhormonal female contraception". Science Translational Medicine. 13 (606). doi:10.1126/scitranslmed.abd5219. PMC 8868023. PMID 34380769. S2CID 236979903.
- ^ "Probiotics help lab corals survive deadly heat stress". Science News. 13 August 2021. Retrieved 22 September 2021.
- ^ Santoro, Erika P.; Borges, Ricardo M.; Espinoza, Josh L.; Freire, Marcelo; Messias, Camila S. M. A.; Villela, Helena D. M.; Pereira, Leandro M.; Vilela, Caren L. S.; Rosado, João G.; Cardoso, Pedro M.; Rosado, Phillipe M.; Assis, Juliana M.; Duarte, Gustavo A. S.; Perna, Gabriela; Rosado, Alexandre S.; Macrae, Andrew; Dupont, Christopher L.; Nelson, Karen E.; Sweet, Michael J.; Voolstra, Christian R.; Peixoto, Raquel S. (August 2021). "Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality". Science Advances. 7 (33). Bibcode:2021SciA....7.3088S. doi:10.1126/sciadv.abg3088. hdl:10754/670602. PMC 8363143. PMID 34389536.
- ^ "Japanese scientists produce first 3D-bioprinted, marbled Wagyu beef". New Atlas. 25 August 2021. Retrieved 21 September 2021.
- ^ Kang, Dong-Hee; Louis, Fiona; Liu, Hao; Shimoda, Hiroshi; Nishiyama, Yasutaka; Nozawa, Hajime; Kakitani, Makoto; Takagi, Daisuke; Kasa, Daijiro; Nagamori, Eiji; Irie, Shinji; Kitano, Shiro; Matsusaki, Michiya (24 August 2021). "Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting". Nature Communications. 12 (1): 5059. Bibcode:2021NatCo..12.5059K. doi:10.1038/s41467-021-25236-9. ISSN 2041-1723. PMC 8385070. PMID 34429413.
- ^ "Researchers develop an engineered 'mini' CRISPR genome editing system". phys.org. Retrieved 18 October 2021.
- ^ Xu, Xiaoshu; Chemparathy, Augustine; Zeng, Leiping; Kempton, Hannah R.; Shang, Stephen; Nakamura, Muneaki; Qi, Lei S. (3 September 2021). "Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing". Molecular Cell. 81 (20): 4333–4345.e4. doi:10.1016/j.molcel.2021.08.008. ISSN 1097-2765. PMID 34480847. S2CID 237417317.
- ^ a b Lavars, Nick (20 September 2021). "Lab-grown coffee cuts out the beans and deforestation". New Atlas. Retrieved 18 October 2021.
- ^ a b "Eco-friendly, lab-grown coffee is on the way, but it comes with a catch". The Guardian. 16 October 2021. Retrieved 21 November 2021.
- ^ "Sustainable coffee grown in Finland – | VTT News". www.vttresearch.com. 15 September 2021. Retrieved 18 October 2021.
- ^ "World-first artificial synthesis of starch from CO2 outperforms nature". New Atlas. 28 September 2021. Retrieved 18 October 2021.
- ^ Cai, Tao; Sun, Hongbing; Qiao, Jing; Zhu, Leilei; Zhang, Fan; Zhang, Jie; Tang, Zijing; Wei, Xinlei; Yang, Jiangang; Yuan, Qianqian; Wang, Wangyin; Yang, Xue; Chu, Huanyu; Wang, Qian; You, Chun; Ma, Hongwu; Sun, Yuanxia; Li, Yin; Li, Can; Jiang, Huifeng; Wang, Qinhong; Ma, Yanhe (24 September 2021). "Cell-free chemoenzymatic starch synthesis from carbon dioxide". Science. 373 (6562): 1523–1527. Bibcode:2021Sci...373.1523C. doi:10.1126/science.abh4049. PMID 34554807. S2CID 237615280.
- ^ Boonstra, Evert; de Kleijn, Roy; Colzato, Lorenza S.; Alkemade, Anneke; Forstmann, Birte U.; Nieuwenhuis, Sander (6 October 2015). "Neurotransmitters as food supplements: the effects of GABA on brain and behavior". Frontiers in Psychology. 6: 1520. doi:10.3389/fpsyg.2015.01520. PMC 4594160. PMID 26500584.
- ^ "Tomato In Japan Is First CRISPR-Edited Food In The World To Go On Sale". IFLScience. Retrieved 18 October 2021.
- ^ Wang, Tian; Zhang, Hongyan; Zhu, Hongliang (15 June 2019). "CRISPR technology is revolutionizing the improvement of tomato and other fruit crops". Horticulture Research. 6 (1): 77. Bibcode:2019HorR....6...77W. doi:10.1038/s41438-019-0159-x. ISSN 2052-7276. PMC 6570646. PMID 31240102.
- ^ Yirka, Bob. "Reprogramming heart muscle cells to repair damage from heart attacks". medicalxpress.com. Retrieved 20 October 2021.
- ^ Chen, Yanpu; Lüttmann, Felipe F.; Schoger, Eric; Schöler, Hans R.; Zelarayán, Laura C.; Kim, Kee-Pyo; Haigh, Jody J.; Kim, Johnny; Braun, Thomas (24 September 2021). "Reversible reprogramming of cardiomyocytes to a fetal state drives heart regeneration in mice". Science. 373 (6562): 1537–1540. Bibcode:2021Sci...373.1537C. doi:10.1126/science.abg5159. ISSN 0036-8075. PMID 34554778. S2CID 237617229.
- ^ "WHO endorses use of world's first malaria vaccine in Africa". The Guardian. 2021-10-08. Retrieved 2021-10-14.
- ^ "New, environmentally friendly method to extract and separate rare earth elements". Penn State. 2021-10-08. Retrieved 2021-10-14.
- ^ Dong, Ziye; Mattocks, Joseph A.; Deblonde, Gauthier J.-P.; Hu, Dehong; Jiao, Yongqin; Cotruvo, Joseph A.; Park, Dan M. (8 October 2021). "Bridging Hydrometallurgy and Biochemistry: A Protein-Based Process for Recovery and Separation of Rare Earth Elements". ACS Central Science. 7 (11): 1798–1808. doi:10.1021/acscentsci.1c00724. ISSN 2374-7943. PMC 8614107. PMID 34841054.
- ^ "What does the first successful test of a pig-to-human kidney transplant mean?". Science News. 22 October 2021. Retrieved 15 November 2021.
- ^ "Progress in Xenotransplantation Opens Door to New Supply of Critically Needed Organs". NYU Langone News. Retrieved 15 November 2021.
- ^ "A chewing gum that could reduce SARS-CoV-2 transmission". University of Pennsylvania. Retrieved 13 December 2021.
- ^ Daniell, Henry; Nair, Smruti K.; Esmaeili, Nardana; Wakade, Geetanjali; Shahid, Naila; Ganesan, Prem Kumar; Islam, Md Reyazul; Shepley-McTaggart, Ariel; Feng, Sheng; Gary, Ebony N.; Ali, Ali R.; Nuth, Manunya; Cruz, Selene Nunez; Graham-Wooten, Jevon; Streatfield, Stephen J.; Montoya-Lopez, Ruben; Kaznica, Paul; Mawson, Margaret; Green, Brian J.; Ricciardi, Robert; Milone, Michael; Harty, Ronald N.; Wang, Ping; Weiner, David B.; Margulies, Kenneth B.; Collman, Ronald G. (10 November 2021). "Debulking SARS-CoV-2 in saliva using angiotensin converting enzyme 2 in chewing gum to decrease oral virus transmission and infection". Molecular Therapy. 30 (5): 1966–1978. doi:10.1016/j.ymthe.2021.11.008. ISSN 1525-0016. PMC 8580552. PMID 34774754.
- ^ "Therapy used on mice may transform spinal injury treatments, say scientists". The Guardian. 11 November 2021. Retrieved 11 December 2021.
- ^ University. "'Dancing molecules' successfully repair severe spinal cord injuries in mice". Northwestern University. Retrieved 11 December 2021.
- ^ Álvarez, Z.; Kolberg-Edelbrock, A. N.; Sasselli, I. R.; Ortega, J. A.; Qiu, R.; Syrgiannis, Z.; Mirau, P. A.; Chen, F.; Chin, S. M.; Weigand, S.; Kiskinis, E.; Stupp, S. I. (12 November 2021). "Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury". Science. 374 (6569): 848–856. Bibcode:2021Sci...374..848A. doi:10.1126/science.abh3602. ISSN 0036-8075. PMC 8723833. PMID 34762454. S2CID 244039388.
- ^ "Antibiotic resistance outwitted by supercomputers". University of Portsmouth. Retrieved 13 December 2021.
- ^ König, Gerhard; Sokkar, Pandian; Pryk, Niclas; Heinrich, Sascha; Möller, David; Cimicata, Giuseppe; Matzov, Donna; Dietze, Pascal; Thiel, Walter; Bashan, Anat; Bandow, Julia Elisabeth; Zuegg, Johannes; Yonath, Ada; Schulz, Frank; Sanchez-Garcia, Elsa (16 November 2021). "Rational prioritization strategy allows the design of macrolide derivatives that overcome antibiotic resistance". Proceedings of the National Academy of Sciences. 118 (46): e2113632118. Bibcode:2021PNAS..11813632K. doi:10.1073/pnas.2113632118. ISSN 0027-8424. PMC 8609559. PMID 34750269.
- ^ Hathaway, Bill. "Novel Lyme vaccine shows promise". Yale University. Retrieved 13 December 2021.
Compared to non-immunized guinea pigs, vaccinated animals exposed to infected ticks quickly developed redness at the tick bite site. None of the immunized animals developed Lyme disease if ticks were removed when redness developed. In contrast, about half of the control group became infected with B. burgdorferi after tick removal. When a single infected tick was attached to immunized guinea pigs and not removed, none of vaccinated animals were infected compared to 60 percent of control animals. However, protection waned in immunized guinea pigs if three ticks remained attached to the animal. Ticks in immunized animals were unable to feed aggressively and dislodged more quickly than those on guinea pigs in the control group.
- ^ Sajid, Andaleeb; Matias, Jaqueline; Arora, Gunjan; Kurokawa, Cheyne; DePonte, Kathleen; Tang, Xiaotian; Lynn, Geoffrey; Wu, Ming-Jie; Pal, Utpal; Strank, Norma Olivares; Pardi, Norbert; Narasimhan, Sukanya; Weissman, Drew; Fikrig, Erol (2021). "mRNA vaccination induces tick resistance and prevents transmission of the Lyme disease agent". Science Translational Medicine. 13 (620): eabj9827. doi:10.1126/scitranslmed.abj9827. PMID 34788080. S2CID 244375227.
- ^ Wipulasena, Aanya; Mashal, Mujib (7 December 2021). "Sri Lanka's Plunge Into Organic Farming Brings Disaster". The New York Times. Retrieved 13 December 2021.
- ^ "Sri Lanka ends farm chemical ban as organic drive fails". phys.org. Retrieved 13 December 2021.
- ^ "Team Builds First Living Robots That Can Reproduce". November 29, 2021. Retrieved December 1, 2021.
- ^ Kriegman, Sam; Blackiston, Douglas; Levin, Michael; Bongard, Josh (7 December 2021). "Kinematic self-replication in reconfigurable organisms". Proceedings of the National Academy of Sciences. 118 (49): e2112672118. Bibcode:2021PNAS..11812672K. doi:10.1073/pnas.2112672118. ISSN 0027-8424. PMC 8670470. PMID 34845026. S2CID 244769761.
- ^ "Scientists claim big advance in using DNA to store data". bbc.co.uk. 2 December 2021. Retrieved 3 December 2021.
- ^ "Stem cell-based treatment produces insulin in patients with Type 1 diabetes". news.ubc.ca. 2 December 2021. Retrieved 6 December 2021.
- ^ Ramzy, Adam; Thompson, David M.; Ward-Hartstonge, Kirsten A.; Ivison, Sabine; Cook, Laura; Garcia, Rosa V.; Loyal, Jackson; Kim, Peter T. W.; Warnock, Garth L.; Levings, Megan K.; Kieffer, Timothy J. (2 December 2021). "Implanted pluripotent stem-cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in patients with type 1 diabetes". Cell Stem Cell. 28 (12): 2047–2061.e5. doi:10.1016/j.stem.2021.10.003. ISSN 1934-5909. PMID 34861146. S2CID 244855649.
- ^ Yirka, Bob. "A mass of human brain cells in a petri dish has been taught to play Pong". medicalxpress.com. Retrieved 16 January 2022.
- ^ Kagan, Brett J.; Kitchen, Andy C.; Tran, Nhi T.; Parker, Bradyn J.; Bhat, Anjali; Rollo, Ben; Razi, Adeel; Friston, Karl J. (3 December 2021). "In vitro neurons learn and exhibit sentience when embodied in a simulated game-world". bioRxiv 10.1101/2021.12.02.471005. doi:10.1101/2021.12.02.471005. S2CID 244883160 – via bioRxiv.
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ "Organoid intelligence: a new biocomputing frontier". Frontiers. Archived from the original on 2023-06-23. Retrieved 2024-01-11.
- ^ "Japanese scientists develop glowing masks to detect coronavirus". Kyodo News+. Retrieved 16 January 2022.
- ^ Dicorato, Allessandra. "New prime editing system inserts entire genes in human cells". Broad Institute of MIT. Retrieved 16 January 2022.
- ^ Anzalone, Andrew V.; Gao, Xin D.; Podracky, Christopher J.; Nelson, Andrew T.; Koblan, Luke W.; Raguram, Aditya; Levy, Jonathan M.; Mercer, Jaron A. M.; Liu, David R. (9 December 2021). "Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing". Nature Biotechnology. 40 (5): 731–740. doi:10.1038/s41587-021-01133-w. ISSN 1546-1696. PMC 9117393. PMID 34887556. S2CID 245012407.
- ^ "Experimental MRNA HIV Vaccine Safe, Shows Promise In Animals - ScienceMag". 9 December 2021. Archived from the original on 18 January 2022. Retrieved 16 January 2022.
- ^ Zhang Peng; Elisabeth Narayanan; et al. (December 2021). "A multiclade env–gag VLP mRNA vaccine elicits tier-2 HIV-1-neutralizing antibodies and reduces the risk of heterologous SHIV infection in macaques". Nature Medicine. 27 (12): 2234–2245. doi:10.1038/s41591-021-01574-5. ISSN 1546-170X. PMID 34887575. S2CID 245116317.
- ^ "Japanese scientists develop vaccine to eliminate cells behind aging". Japan Times. 12 December 2021. Archived from the original on 12 December 2021. Retrieved 12 December 2021.
- ^ "Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice". Nature Aging. 10 December 2021. Retrieved 12 December 2021.
- ^ Morens, David M.; Taubenberger, Jeffery K.; Fauci, Anthony S. (15 December 2021). "Universal Coronavirus Vaccines — An Urgent Need". New England Journal of Medicine. 386 (4): 297–299. doi:10.1056/NEJMp2118468. PMC 11000439. PMID 34910863. S2CID 245219817.
- ^ "Chemists use DNA to build the world's tiniest antenna". University of Montreal. Retrieved 19 January 2022.
- ^ Harroun, Scott G.; Lauzon, Dominic; Ebert, Maximilian C. C. J. C.; Desrosiers, Arnaud; Wang, Xiaomeng; Vallée-Bélisle, Alexis (January 2022). "Monitoring protein conformational changes using fluorescent nanoantennas". Nature Methods. 19 (1): 71–80. doi:10.1038/s41592-021-01355-5. ISSN 1548-7105. PMID 34969985. S2CID 245593311.
- ^ "Japan embraces CRISPR-edited fish". Nature Biotechnology. 40 (1): 10. 1 January 2022. doi:10.1038/s41587-021-01197-8. PMID 34969964. S2CID 245593283. Retrieved 17 January 2022.
- ^ "Startup hopes genome-edited pufferfish will be a hit in 2022". The Japan Times. 5 January 2022. Archived from the original on 17 January 2022. Retrieved 17 January 2022.
- ^ "Scientists vacuumed animal DNA out of thin air for the first time". Science News. 18 January 2022. Retrieved 29 January 2022.
- ^ Clare, Elizabeth L.; Economou, Chloe K.; Bennett, Frances J.; Dyer, Caitlin E.; Adams, Katherine; McRobie, Benjamin; Drinkwater, Rosie; Littlefair, Joanne E. (7 February 2022). "Measuring biodiversity from DNA in the air". Current Biology. 32 (3): 693–700.e5. Bibcode:2022CBio...32E.693C. doi:10.1016/j.cub.2021.11.064. ISSN 0960-9822. PMID 34995488. S2CID 245772825.
- ^ Lynggaard, Christina; Bertelsen, Mads Frost; Jensen, Casper V.; Johnson, Matthew S.; Frøslev, Tobias Guldberg; Olsen, Morten Tange; Bohmann, Kristine (7 February 2022). "Airborne environmental DNA for terrestrial vertebrate community monitoring". Current Biology. 32 (3): 701–707.e5. Bibcode:2022CBio...32E.701L. doi:10.1016/j.cub.2021.12.014. ISSN 0960-9822. PMC 8837273. PMID 34995490.
- ^ "Fastest DNA sequencing technique helps undiagnosed patients find answers in mere hours". Stanford. 12 January 2022. Archived from the original on 22 January 2022. Retrieved 23 January 2022.
- ^ Gorzynski, John E.; Goenka, Sneha D.; Shafin, Kishwar; Jensen, Tanner D.; Fisk, Dianna G.; Grove, Megan E.; Spiteri, Elizabeth; Pesout, Trevor; Monlong, Jean; Baid, Gunjan; Bernstein, Jonathan A.; Ceresnak, Scott; Chang, Pi-Chuan; Christle, Jeffrey W.; Chubb, Henry; Dalton, Karen P.; Dunn, Kyla; Garalde, Daniel R.; Guillory, Joseph; Knowles, Joshua W.; Kolesnikov, Alexey; Ma, Michael; Moscarello, Tia; Nattestad, Maria; Perez, Marco; Ruzhnikov, Maura R. Z.; Samadi, Mehrzad; Setia, Ankit; Wright, Chris; Wusthoff, Courtney J.; Xiong, Katherine; Zhu, Tong; Jain, Miten; Sedlazeck, Fritz J.; Carroll, Andrew; Paten, Benedict; Ashley, Euan A. (12 January 2022). "Ultrarapid Nanopore Genome Sequencing in a Critical Care Setting". New England Journal of Medicine. 386 (7): 700–702. doi:10.1056/NEJMc2112090. PMID 35020984. S2CID 245907257.
- ^ Fuller, Carl W.; Padayatti, Pius S.; Abderrahim, Hadi; Adamiak, Lisa; Alagar, Nolan; Ananthapadmanabhan, Nagaraj; Baek, Jihye; Chinni, Sarat; Choi, Chulmin; Delaney, Kevin J.; Dubielzig, Rich; Frkanec, Julie; Garcia, Chris; Gardner, Calvin; Gebhardt, Daniel; Geiser, Tim; Gutierrez, Zachariah; Hall, Drew A.; Hodges, Andrew P.; Hou, Guangyuan; Jain, Sonal; Jones, Teresa; Lobaton, Raymond; Majzik, Zsolt; Marte, Allen; Mohan, Prateek; Mola, Paul; Mudondo, Paul; Mullinix, James; Nguyen, Thuan; Ollinger, Frederick; Orr, Sarah; Ouyang, Yuxuan; Pan, Paul; Park, Namseok; Porras, David; Prabhu, Keshav; Reese, Cassandra; Ruel, Travers; Sauerbrey, Trevor; Sawyer, Jaymie R.; Sinha, Prem; Tu, Jacky; Venkatesh, A. G.; VijayKumar, Sushmitha; Zheng, Le; Jin, Sungho; Tour, James M.; Church, George M.; Mola, Paul W.; Merriman, Barry (1 February 2022). "Molecular electronics sensors on a scalable semiconductor chip: A platform for single-molecule measurement of binding kinetics and enzyme activity". Proceedings of the National Academy of Sciences. 119 (5). Bibcode:2022PNAS..11912812F. doi:10.1073/pnas.2112812119. ISSN 0027-8424. PMC 8812571. PMID 35074874.
- ^ "DNA computer could tell you if your drinking water is contaminated". New Scientist. Retrieved 16 March 2022.
- ^ Jung, Jaeyoung K.; Archuleta, Chloé M.; Alam, Khalid K.; Lucks, Julius B. (17 February 2022). "Programming cell-free biosensors with DNA strand displacement circuits". Nature Chemical Biology. 18 (4): 385–393. doi:10.1038/s41589-021-00962-9. ISSN 1552-4469. PMC 8964419. PMID 35177837.
- ^ "Tiny 'skyscrapers' help bacteria convert sunlight into electricity". University of Cambridge. Retrieved 19 April 2022.
- ^ Chen, Xiaolong; Lawrence, Joshua M.; Wey, Laura T.; Schertel, Lukas; Jing, Qingshen; Vignolini, Silvia; Howe, Christopher J.; Kar-Narayan, Sohini; Zhang, Jenny Z. (7 March 2022). "3D-printed hierarchical pillar array electrodes for high-performance semi-artificial photosynthesis". Nature Materials. 21 (7): 811–818. Bibcode:2022NatMa..21..811C. doi:10.1038/s41563-022-01205-5. ISSN 1476-4660. PMID 35256790. S2CID 247255146.
- ^ "Rice and maize yields boosted up to 10 per cent by CRISPR gene editing". New Scientist. Retrieved 19 April 2022.
- ^ Chen, Wenkang; Chen, Lu; Zhang, Xuan; Yang, Ning; Guo, Jianghua; Wang, Min; Ji, Shenghui; Zhao, Xiangyu; Yin, Pengfei; Cai, Lichun; Xu, Jing; Zhang, Lili; Han, Yingjia; Xiao, Yingni; Xu, Gen; Wang, Yuebin; Wang, Shuhui; Wu, Sheng; Yang, Fang; Jackson, David; Cheng, Jinkui; Chen, Saihua; Sun, Chuanqing; Qin, Feng; Tian, Feng; Fernie, Alisdair R.; Li, Jiansheng; Yan, Jianbing; Yang, Xiaohong (25 March 2022). "Convergent selection of a WD40 protein that enhances grain yield in maize and rice". Science. 375 (6587): eabg7985. doi:10.1126/science.abg7985. PMID 35324310. S2CID 247677363.
- ^ "Gap-free human genome sequence completed for first time". BBC News. 2022-04-01. Retrieved 2022-04-03.
- ^ Sergey Nurk; et al. (2022). "The complete sequence of a human genome". Science. 376 (6588): 44–53. Bibcode:2022Sci...376...44N. bioRxiv 10.1101/2021.05.26.445798. doi:10.1126/science.abj6987. PMC 9186530. PMID 35357919. S2CID 247854936.
- ^ "Gene-edited tomatoes could soon be sold in England". BBC News. 24 May 2022. Retrieved 29 May 2022.
- ^ "Gene-edited tomatoes could be a new source of vitamin D". John Innes Centre. 23 May 2022. Retrieved 29 May 2022.
- ^ Li, Jie; Scarano, Aurelia; Gonzalez, Nestor Mora; D'Orso, Fabio; Yue, Yajuan; Nemeth, Krisztian; Saalbach, Gerhard; Hill, Lionel; de Oliveira Martins, Carlo; Moran, Rolando; Santino, Angelo; Martin, Cathie (June 2022). "Biofortified tomatoes provide a new route to vitamin D sufficiency". Nature Plants. 8 (6): 611–616. Bibcode:2022NatPl...8..611L. doi:10.1038/s41477-022-01154-6. ISSN 2055-0278. PMC 9213236. PMID 35606499. S2CID 249014331.
- ^ Brahambhatt, Rupendra. "Science Scientists can now grow wood in a lab without cutting a single tree". Interesting Engineering. Retrieved 23 June 2022.
- ^ Beckwith, Ashley L.; Borenstein, Jeffrey T.; Velásquez-García, Luis F. (1 April 2022). "Physical, mechanical, and microstructural characterization of novel, 3D-printed, tunable, lab-grown plant materials generated from Zinnia elegans cell cultures". Materials Today. 54: 27–41. doi:10.1016/j.mattod.2022.02.012. ISSN 1369-7021. S2CID 247300299.
- ^ "Scientists grew living human skin around a robotic finger". Science News. 9 June 2022. Retrieved 20 July 2022.
- ^ Kawai, Michio; Nie, Minghao; Oda, Haruka; Morimoto, Yuya; Takeuchi, Shoji (6 July 2022). "Living skin on a robot". Matter. 5 (7): 2190–2208. doi:10.1016/j.matt.2022.05.019. ISSN 2590-2393.
- ^ Reynolds, Matt. "Scientists Are Trying to Grow Crops in the Dark". Wired. Retrieved 23 July 2022.
- ^ Hann, Elizabeth C.; Overa, Sean; Harland-Dunaway, Marcus; Narvaez, Andrés F.; Le, Dang N.; Orozco-Cárdenas, Martha L.; Jiao, Feng; Jinkerson, Robert E. (June 2022). "A hybrid inorganic–biological artificial photosynthesis system for energy-efficient food production". Nature Food. 3 (6): 461–471. doi:10.1038/s43016-022-00530-x. ISSN 2662-1355. PMID 37118051. S2CID 250004816.
- ^ "Algae biopanel windows make power, oxygen and biomass, and suck up CO2". New Atlas. 11 July 2022. Retrieved 21 August 2022.
- ^ Paleja, Ameya (13 July 2022). "Algae-filled panels could generate oxygen and electricity while absorbing CO2". interestingengineering.com. Retrieved 21 August 2022.
- ^ Talaei, Maryam; Mahdavinejad, Mohammadjavad; Azari, Rahman (1 March 2020). "Thermal and energy performance of algae bioreactive façades: A review". Journal of Building Engineering. 28: 101011. doi:10.1016/j.jobe.2019.101011. ISSN 2352-7102. S2CID 210245691.
- ^ Wilkinson, Sara; Stoller, Paul; Ralph, Peter; Hamdorf, Brenton; Catana, Laila Navarro; Kuzava, Gabriela Santana (1 January 2017). "Exploring the Feasibility of Algae Building Technology in NSW". Procedia Engineering. 180: 1121–1130. doi:10.1016/j.proeng.2017.04.272. ISSN 1877-7058.
- ^ "Biologists train AI to generate medicines and vaccines". University of Washington-Harborview Medical Center.
- ^ Wang, Jue; Lisanza, Sidney; Juergens, David; Tischer, Doug; Watson, Joseph L.; Castro, Karla M.; Ragotte, Robert; Saragovi, Amijai; Milles, Lukas F.; Baek, Minkyung; Anishchenko, Ivan; Yang, Wei; Hicks, Derrick R.; Expòsit, Marc; Schlichthaerle, Thomas; Chun, Jung-Ho; Dauparas, Justas; Bennett, Nathaniel; Wicky, Basile I. M.; Muenks, Andrew; DiMaio, Frank; Correia, Bruno; Ovchinnikov, Sergey; Baker, David (22 July 2022). "Scaffolding protein functional sites using deep learning" (PDF). Science. 377 (6604): 387–394. Bibcode:2022Sci...377..387W. doi:10.1126/science.abn2100. ISSN 0036-8075. PMC 9621694. PMID 35862514. S2CID 250953434.
- ^ "Scientists turned dead spiders into robots". Science News. 4 August 2022. Retrieved 21 August 2022.
- ^ Yap, Te Faye; Liu, Zhen; Rajappan, Anoop; Shimokusu, Trevor J.; Preston, Daniel J. (25 July 2022). "Necrobotics: Biotic Materials as Ready-to-Use Actuators". Advanced Science. 9 (29): 2201174. doi:10.1002/advs.202201174. ISSN 2198-3844. PMC 9561765. PMID 35875913.
- ^ "DeepMind uncovers structure of 200m proteins in scientific leap forward". The Guardian. 2022-07-28. Retrieved 2022-07-28.
- ^ "AlphaFold reveals the structure of the protein universe". DeepMind. 2022-07-28. Retrieved 2022-07-28.
- ^ "Artificial neuron swaps dopamine with rat brain cells like a real one". New Scientist. Retrieved 16 September 2022.
- ^ Wang, Ting; Wang, Ming; Wang, Jianwu; Yang, Le; Ren, Xueyang; Song, Gang; Chen, Shisheng; Yuan, Yuehui; Liu, Ruiqing; Pan, Liang; Li, Zheng; Leow, Wan Ru; Luo, Yifei; Ji, Shaobo; Cui, Zequn; He, Ke; Zhang, Feilong; Lv, Fengting; Tian, Yuanyuan; Cai, Kaiyu; Yang, Bowen; Niu, Jingyi; Zou, Haochen; Liu, Songrui; Xu, Guoliang; Fan, Xing; Hu, Benhui; Loh, Xian Jun; Wang, Lianhui; Chen, Xiaodong (8 August 2022). "A chemically mediated artificial neuron". Nature Electronics. 5 (9): 586–595. doi:10.1038/s41928-022-00803-0. hdl:10356/163240. ISSN 2520-1131. S2CID 251464760.
- ^ "Food crops made 20% more efficient at harnessing sunlight". BBC News. 19 August 2022. Retrieved 21 August 2022.
- ^ Souza, Amanda P. De; et al. (2022). "Soybean photosynthesis and crop yield are improved by accelerating recovery from photoprotection". Science. 377 (6608): 851–854. Bibcode:2022Sci...377..851D. doi:10.1126/science.adc9831. PMID 35981033. S2CID 251670065.
- University press release: "Bioengineering: Better photosynthesis increases yields in food crops". University of Illinois Urbana-Champaign via Science Daily. 18 August 2022. Retrieved 21 August 2022.
- ^ "Scientists create world's first 'synthetic embryos'". The Guardian. 3 August 2022. Retrieved 16 September 2022.
- ^ Tarazi, Shadi; Aguilera-Castrejon, Alejandro; Joubran, Carine; Ghanem, Nadir; Ashouokhi, Shahd; Roncato, Francesco; Wildschutz, Emilie; Haddad, Montaser; Oldak, Bernardo; Gomez-Cesar, Elidet; Livnat, Nir; Viukov, Sergey; Lokshtanov, Dmitry; Naveh-Tassa, Segev; Rose, Max; Hanna, Suhair; Raanan, Calanit; Brenner, Ori; Kedmi, Merav; Keren-Shaul, Hadas; Lapidot, Tsvee; Maza, Itay; Novershtern, Noa; Hanna, Jacob H. (1 September 2022). "Post-gastrulation synthetic embryos generated ex utero from mouse naive ESCs". Cell. 185 (18): 3290–3306.e25. doi:10.1016/j.cell.2022.07.028. ISSN 0092-8674. PMC 9439721. PMID 35988542.
- ^ Kotsiliti, Eleni (September 2022). "Synthetic mouse embryos". Nature Biotechnology. 40 (9): 1327. doi:10.1038/s41587-022-01479-9. ISSN 1546-1696. PMID 36085513. S2CID 252181697.
- ^ Johnson, Carolyn Y. (2022-08-01). "Scientists create synthetic mouse embryos, a potential key to healing humans". Washington Post. ISSN 0190-8286. Retrieved 2023-09-16.
- ^ "Israeli Scientist Creates World's First Synthetic Embryo Using Just Stem Cells". Haaretz. Retrieved 2023-09-16.
- ^ Aguilera-Castrejon, Alejandro; Oldak, Bernardo; Shani, Tom; Ghanem, Nadir; Itzkovich, Chen; Slomovich, Sharon; Tarazi, Shadi; Bayerl, Jonathan; Chugaeva, Valeriya; Ayyash, Muneef; Ashouokhi, Shahd; Sheban, Daoud; Livnat, Nir; Lasman, Lior; Viukov, Sergey (May 2021). "Ex utero mouse embryogenesis from pre-gastrulation to late organogenesis". Nature. 593 (7857): 119–124. Bibcode:2021Natur.593..119A. doi:10.1038/s41586-021-03416-3. ISSN 1476-4687. PMID 33731940. S2CID 232296340.
- ^ Kolata, Gina (2021-03-17). "Scientists Grow Mouse Embryos in a Mechanical Womb". The New York Times. ISSN 0362-4331. Retrieved 2023-09-16.
- ^ "Gentechnik soll kein Grund mehr für Verbote von Nutzpflanzen sein". DER STANDARD (in Austrian German). Retrieved 21 October 2022.
- ^ Gould, Fred; Amasino, Richard M.; Brossard, Dominique; Buell, C. Robin; Dixon, Richard A.; Falck-Zepeda, Jose B.; Gallo, Michael A.; Giller, Ken E.; Glenna, Leland L.; Griffin, Timothy; Magraw, Daniel; Mallory-Smith, Carol; Pixley, Kevin V.; Ransom, Elizabeth P.; Stelly, David M.; Stewart, C. Neal (2 September 2022). "Toward product-based regulation of crops". Science. 377 (6610): 1051–1053. Bibcode:2022Sci...377.1051G. doi:10.1126/science.abo3034. ISSN 0036-8075. PMID 36048940. S2CID 252008948.
- Expert debate about the proposal: "Vorschlag zur Regulation von Zuchtpflanzen" (in German). Science Media Centre Germany. Retrieved 21 October 2022.
- University press release: "Researchers propose new framework for regulating engineered crops". North Carolina State University via phys.org. Retrieved 21 October 2022.
- ^ "How cyborg cockroaches could be used to save people trapped under earthquake rubble". ABC News. 22 September 2022. Retrieved 20 October 2022.
- ^ Kakei, Yujiro; Katayama, Shumpei; Lee, Shinyoung; Takakuwa, Masahito; Furusawa, Kazuya; Umezu, Shinjiro; Sato, Hirotaka; Fukuda, Kenjiro; Someya, Takao (5 September 2022). "Integration of body-mounted ultrasoft organic solar cell on cyborg insects with intact mobility". npj Flexible Electronics. 6 (1): 1–9. doi:10.1038/s41528-022-00207-2. hdl:10356/164346. ISSN 2397-4621.
- Research institute press release: "Robo-bug: A rechargeable, remote-controllable cyborg cockroach". RIKEN via techxplore.com. Retrieved 20 October 2022.
- ^ "Bacteria and catalysts recycle waste plastic into useful chemicals". New Scientist. Retrieved 20 November 2022.
- ^ Sullivan, Kevin P.; Werner, Allison Z.; Ramirez, Kelsey J.; Ellis, Lucas D.; Bussard, Jeremy R.; Black, Brenna A.; Brandner, David G.; Bratti, Felicia; Buss, Bonnie L.; Dong, Xueming; Haugen, Stefan J.; Ingraham, Morgan A.; Konev, Mikhail O.; Michener, William E.; Miscall, Joel; Pardo, Isabel; Woodworth, Sean P.; Guss, Adam M.; Román-Leshkov, Yuriy; Stahl, Shannon S.; Beckham, Gregg T. (14 October 2022). "Mixed plastics waste valorization through tandem chemical oxidation and biological funneling". Science. 378 (6616): 207–211. Bibcode:2022Sci...378..207S. doi:10.1126/science.abo4626. hdl:10261/281250. ISSN 0036-8075. PMID 36227984. S2CID 252897316.
- ^ Nahle, Zaher (2022). "A proof-of-concept study poised to remodel the drug development process". Frontiers in Medical Technology. 4. doi:10.3389/fmedt.2022.1053588. PMC 9800902. PMID 36590153.
- ^ Ewart, Lorna; Apostolou, Athanasia; Briggs, Skyler A.; Carman, Christopher V.; Chaff, Jake T.; Heng, Anthony R.; Jadalannagari, Sushma; Janardhanan, Jeshina; Jang, Kyung-Jin; Joshipura, Sannidhi R.; Kadam, Mahika M.; Kanellias, Marianne; Kujala, Ville J.; Kulkarni, Gauri; Le, Christopher Y.; Lucchesi, Carolina; Manatakis, Dimitris V.; Maniar, Kairav K.; Quinn, Meaghan E.; Ravan, Joseph S.; Rizos, Ann Catherine; Sauld, John F. K.; Sliz, Josiah D.; Tien-Street, William; Trinidad, Dennis Ramos; Velez, James; Wendell, Max; Irrechukwu, Onyi; Mahalingaiah, Prathap Kumar; Ingber, Donald E.; Scannell, Jack W.; Levner, Daniel (6 December 2022). "Performance assessment and economic analysis of a human Liver-Chip for predictive toxicology". Communications Medicine. 2 (1): 154. doi:10.1038/s43856-022-00209-1. ISSN 2730-664X. PMC 9727064. PMID 36473994.
- ^ "Forschung an Krankheitserregern soll sicherer werden". www.sciencemediacenter.de. Retrieved 17 January 2023.
- ^ Pannu, Jaspreet; Palmer, Megan J.; Cicero, Anita; Relman, David A.; Lipsitch, Marc; Inglesby, Tom (16 December 2022). "Strengthen oversight of risky research on pathogens". Science. 378 (6625): 1170–1172. Bibcode:2022Sci...378.1170P. doi:10.1126/science.adf6020. ISSN 0036-8075. PMID 36480598. S2CID 254998228.
- University press release: "Stanford Researchers Recommend Stronger Oversight of Risky Research on". Stanford University. Retrieved 17 January 2023.
- ^ "New 3D-printing ink could make cultured meat more cost-effective". EurekAlert!. 15 December 2022. Retrieved 16 December 2022.
- ^ Su, Lingshan; Jing, Linzhi; Zeng, Xianjian; Chen, Tong; Liu, Hang; Kong, Yan; Wang, Xiang; Yang, Xin; Fu, Caili; Sun, Jie; Huang, Dejian (January 2023). "3D-Printed Prolamin Scaffolds for Cell-Based Meat Culture". Advanced Materials. 35 (2): 2207397. Bibcode:2023AdM....3507397S. doi:10.1002/adma.202207397. PMID 36271729. S2CID 253063461.
- ^ "University of Maryland School of Medicine Faculty Scientists and Clinicians Perform Historic First Successful Transplant of Porcine Heart into Adult Human with End-Stage Heart Disease". University of Maryland Medical Center. 10 January 2022. Archived from the original on 10 January 2022. Retrieved 11 January 2022.
- ^ "Man gets genetically-modified pig heart in world-first transplant". BBC News. 10 January 2022. Archived from the original on 17 January 2022. Retrieved 11 January 2022.
- ^ "Phage therapies for superbug infections are being tested in Belgium". New Scientist. Retrieved 14 February 2022.
- ^ Eskenazi, Anaïs; Lood, Cédric; Wubbolts, Julia; Hites, Maya; Balarjishvili, Nana; Leshkasheli, Lika; Askilashvili, Lia; Kvachadze, Leila; van Noort, Vera; Wagemans, Jeroen; Jayankura, Marc; Chanishvili, Nina; de Boer, Mark; Nibbering, Peter; Kutateladze, Mzia; Lavigne, Rob; Merabishvili, Maya; Pirnay, Jean-Paul (18 January 2022). "Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae". Nature Communications. 13 (1): 302. Bibcode:2022NatCo..13..302E. doi:10.1038/s41467-021-27656-z. ISSN 2041-1723. PMC 8766457. PMID 35042848.
- ^ "Mit Viren gegen Bakterien - Bakteriophagen-Therapie als Hoffnung gegen multiresistente Keime". Deutschlandfunk (in German). Retrieved 14 February 2022.
- ^ Yirka, Bob. "Using a bacteriophage to successfully treat a patient infected with a drug-resistant bacteria". medicalxpress.com. Retrieved 14 February 2022.
- ^ "Scientists regrow frog's lost leg". EurekAlert!. 26 January 2022. Archived from the original on 27 January 2022. Retrieved 27 January 2022.
- ^ Murugan, Nirosha J.; Vigran, Hannah J.; Miller, Kelsie A.; Golding, Annie; Pham, Quang L.; Sperry, Megan M.; Rasmussen-Ivey, Cody; Kane, Anna W.; Kaplan, David L.; Levin, Michael (January 2022). "Acute multidrug delivery via a wearable bioreactor facilitates long-term limb regeneration and functional recovery in adult Xenopus laevis". Science Advances. 8 (4): eabj2164. Bibcode:2022SciA....8.2164M. doi:10.1126/sciadv.abj2164. PMC 8791464. PMID 35080969. S2CID 246296571.
- ^ "Detecting novel SARS-CoV-2 variants in New York City wastewater". University of Missouri. Retrieved 10 March 2022.
- ^ Smyth, Davida S.; Trujillo, Monica; Gregory, Devon A.; Cheung, Kristen; Gao, Anna; Graham, Maddie; Guan, Yue; Guldenpfennig, Caitlyn; Hoxie, Irene; Kannoly, Sherin; Kubota, Nanami; Lyddon, Terri D.; Markman, Michelle; Rushford, Clayton; San, Kaung Myat; Sompanya, Geena; Spagnolo, Fabrizio; Suarez, Reinier; Teixeiro, Emma; Daniels, Mark; Johnson, Marc C.; Dennehy, John J. (3 February 2022). "Tracking cryptic SARS-CoV-2 lineages detected in NYC wastewater". Nature Communications. 13 (1): 635. Bibcode:2022NatCo..13..635S. doi:10.1038/s41467-022-28246-3. ISSN 2041-1723. PMC 8813986. PMID 35115523.
- ^ "Paralysed man with severed spine walks thanks to implant". BBC News. 7 February 2022. Retrieved 10 March 2022.
- ^ Rowald, Andreas; Komi, Salif; Demesmaeker, Robin; et al. (February 2022). "Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis". Nature Medicine. 28 (2): 260–271. doi:10.1038/s41591-021-01663-5. ISSN 1546-170X. PMID 35132264. S2CID 246651655.
- ^ "In world-first, researchers engineer human spinal cord implants for treating paralysis". Tel-Aviv University. Retrieved 10 March 2022.
- ^ "Engineered spinal cord implants restore movement to paralysed mice". Physics World. 23 February 2022. Retrieved 10 March 2022.
- ^ Wertheim, Lior; Edri, Reuven; Goldshmit, Yona; Kagan, Tomer; Noor, Nadav; Ruban, Angela; Shapira, Assaf; Gat-Viks, Irit; Assaf, Yaniv; Dvir, Tal (7 February 2022). "Regenerating the Injured Spinal Cord at the Chronic Phase by Engineered iPSCs-Derived 3D Neuronal Networks". Advanced Science. 9 (11): 2105694. doi:10.1002/advs.202105694. PMC 9008789. PMID 35128819.
- ^ "Comprehensive Cancer Treatment Technique Developed by IBS and UNIST". Businesskorea. 24 February 2022. Retrieved 25 February 2022.
- ^ "Scientists develop a new platform technology for personalized cancer therapy". EurekAlert!. 21 February 2022. Retrieved 25 February 2022.
- ^ Kwon, Taejoon; Ra, Jae Sun; Lee, Soyoung; Baek, In-Joon; Khim, Keon Woo; Lee, Eun A; Song, Eun Kyung; Otarbayev, Daniyar; Jung, Woojae; Park, Yong Hwan; Wie, Minwoo; Bae, Juyoung; Cheng, Himchan; Park, Jun Hong; Kim, Namwoo; Seo, Yuri; Yun, Seongmin; Kim, Ha Eun; Moon, Hyo Eun; Paek, Sun Ha; Park, Tae Joo; Park, Young Un; Rhee, Hwanseok; Choi, Jang Hyun; Cho, Seung Woo; Myung, Kyungjae (March 2022). "Precision targeting tumor cells using cancer-specific InDel mutations with CRISPR-Cas9". Proceedings of the National Academy of Sciences. 119 (9): e2103532119. Bibcode:2022PNAS..11903532K. doi:10.1073/pnas.2103532119. PMC 8892319. PMID 35217600.
- ^ Williams, Sarah. "Neuroscientists expand CRISPR toolkit with new, compact Cas7-11 enzyme". Massachusetts Institute of Technology. Retrieved 22 June 2022.
- ^ Kato, Kazuki; Zhou, Wenyuan; Okazaki, Sae; Isayama, Yukari; Nishizawa, Tomohiro; Gootenberg, Jonathan S.; Abudayyeh, Omar O.; Nishimasu, Hiroshi (May 2022). "Structure and engineering of the type III-E CRISPR-Cas7-11 effector complex". Cell. 185 (13): 2324–2337.e16. doi:10.1016/j.cell.2022.05.003. PMID 35643083. S2CID 249103058.
- ^ Özcan, Ahsen; Krajeski, Rohan; Ioannidi, Eleonora; Lee, Brennan; Gardner, Apolonia; Makarova, Kira S.; Koonin, Eugene V.; Abudayyeh, Omar O.; Gootenberg, Jonathan S. (September 2021). "Programmable RNA targeting with the single-protein CRISPR effector Cas7-11". Nature. 597 (7878): 720–725. Bibcode:2021Natur.597..720O. doi:10.1038/s41586-021-03886-5. ISSN 1476-4687. PMID 34489594. S2CID 237432753.
- ^ "Tiny robotic crab is smallest-ever remote-controlled walking robot". Northwestern University. 25 May 2022. Retrieved 27 May 2022.
- ^ Han, Mengdi; Guo, Xiaogang; Chen, Xuexian; Liang, Cunman; Zhao, Hangbo; Zhang, Qihui; Bai, Wubin; Zhang, Fan; Wei, Heming; Wu, Changsheng; Cui, Qinghong; Yao, Shenglian; Sun, Bohan; Yang, Yiyuan; Yang, Quansan; Ma, Yuhang; Xue, Zhaoguo; Kwak, Jean Won; Jin, Tianqi; Tu, Qing; Song, Enming; Tian, Ziao; Mei, Yongfeng; Fang, Daining; Zhang, Haixia; Huang, Yonggang; Zhang, Yihui; Rogers, John A. (25 May 2022). "Submillimeter-scale multimaterial terrestrial robots". Science Robotics. 7 (66): eabn0602. doi:10.1126/scirobotics.abn0602. ISSN 2470-9476. PMID 35613299. S2CID 249064902.
- ^ "Transplant success: Liver survives out of body for days". BBC News. 31 May 2022. Retrieved 24 June 2022.
- ^ Clavien, Pierre-Alain; Dutkowski, Philipp; Mueller, Matteo; Eshmuminov, Dilmurodjon; Bautista Borrego, Lucia; Weber, Achim; Muellhaupt, Beat; Sousa Da Silva, Richard X.; Burg, Brian R.; Rudolf von Rohr, Philipp; Schuler, Martin J.; Becker, Dustin; Hefti, Max; Tibbitt, Mark W. (31 May 2022). "Transplantation of a human liver following 3 days of ex situ normothermic preservation". Nature Biotechnology. 40 (11): 1610–1616. doi:10.1038/s41587-022-01354-7. ISSN 1546-1696. PMID 35641829. S2CID 249234907.
- ^ "New cryoprotectant chemicals could preserve organs without ice damage". New Atlas. 22 June 2022. Retrieved 24 June 2022.
- ^ Bryant, Saffron J.; Awad, Miyah N.; Elbourne, Aaron; Christofferson, Andrew J.; Martin, Andrew V.; Meftahi, Nastaran; Drummond, Calum J.; Greaves, Tamar L.; Bryant, Gary (22 June 2022). "Deep eutectic solvents as cryoprotective agents for mammalian cells". Journal of Materials Chemistry B. 10 (24): 4546–4560. doi:10.1039/D2TB00573E. ISSN 2050-7518. PMID 35670530.
- ^ "A Multicenter, Single Arm, Prospective, Open-Label, Staged Study of the Safety and Efficacy of the AuriNovo Construct for Auricular Reconstruction in Subjects With Unilateral Microtia". clinicaltrials.gov. 15 October 2021. Retrieved 19 July 2022.
- ^ Rabin, Roni Caryn (2 June 2022). "Doctors Transplant Ear of Human Cells, Made by 3-D Printer". The New York Times. Retrieved 19 July 2022.
- ^ "Scientists harness light therapy to target and kill cancer cells in world first". The Guardian. 17 June 2022. Retrieved 21 June 2022.
- ^ Mączyńska, Justyna; Raes, Florian; Da Pieve, Chiara; Turnock, Stephen; Boult, Jessica K. R.; Hoebart, Julia; Niedbala, Marcin; Robinson, Simon P.; Harrington, Kevin J.; Kaspera, Wojciech; Kramer-Marek, Gabriela (21 January 2022). "Triggering anti-GBM immune response with EGFR-mediated photoimmunotherapy". BMC Medicine. 20 (1): 16. doi:10.1186/s12916-021-02213-z. ISSN 1741-7015. PMC 8780306. PMID 35057796.
- News release: "Light-activated 'photoimmunotherapy' could enhance brain cancer treatment". Institute of Cancer Research. 16 June 2022. Retrieved 21 June 2022.
- ^ "New COVID-19 boosters could contain bits of the omicron variant". Science News. 30 June 2022. Retrieved 19 July 2022.
- ^ "'Softer' form of CRISPR may edit genes more accurately". New Scientist. Retrieved 21 August 2022.
- ^ Roy, Sitara; Juste, Sara Sanz; Sneider, Marketta; Auradkar, Ankush; Klanseck, Carissa; Li, Zhiqian; Julio, Alison Henrique Ferreira; del Amo, Victor Lopez; Bier, Ethan; Guichard, Annabel (July 2022). "Cas9/Nickase-induced allelic conversion by homologous chromosome-templated repair in Drosophila somatic cells". Science Advances. 8 (26): eabo0721. Bibcode:2022SciA....8O.721R. doi:10.1126/sciadv.abo0721. ISSN 2375-2548. PMC 10883370. PMID 35776792.
- ^ "UK scientists take 'promising' step towards single Covid and cold vaccine". The Guardian. 2022-07-27. Retrieved 2022-07-28.
- ^ Ng, Kevin W.; Faulkner, Nikhil; Finsterbusch, Katja; Wu, Mary; Harvey, Ruth; Hussain, Saira; Greco, Maria; Liu, Yafei; Kjaer, Svend; Swanton, Charles; Gandhi, Sonia; Beale, Rupert; Gamblin, Steve J.; Cherepanov, Peter; McCauley, John; Daniels, Rodney; Howell, Michael; Arase, Hisashi; Wack, Andreas; Bauer, David L.V.; Kassiotis, George (27 July 2022). "SARS-CoV-2 S2–targeted vaccination elicits broadly neutralizing antibodies". Science Translational Medicine. 14 (655): eabn3715. doi:10.1126/scitranslmed.abn3715. ISSN 1946-6234. PMID 35895836.
- Press release: "Promising developments in pursuit to design pan-coronavirus vaccine". Francis Crick Institute. 2022-07-27. Retrieved 2022-07-28.
- ^ a b c "Pig organs partially revived hour after death". BBC News. 3 August 2022. Retrieved 15 September 2022.
- ^ Andrijevic, David; Vrselja, Zvonimir; Lysyy, Taras; Zhang, Shupei; Skarica, Mario; Spajic, Ana; Dellal, David; Thorn, Stephanie L.; Duckrow, Robert B.; Ma, Shaojie; Duy, Phan Q.; Isiktas, Atagun U.; Liang, Dan; Li, Mingfeng; Kim, Suel-Kee; Daniele, Stefano G.; Banu, Khadija; Perincheri, Sudhir; Menon, Madhav C.; Huttner, Anita; Sheth, Kevin N.; Gobeske, Kevin T.; Tietjen, Gregory T.; Zaveri, Hitten P.; Latham, Stephen R.; Sinusas, Albert J.; Sestan, Nenad (August 2022). "Cellular recovery after prolonged warm ischaemia of the whole body". Nature. 608 (7922): 405–412. Bibcode:2022Natur.608..405A. doi:10.1038/s41586-022-05016-1. ISSN 1476-4687. PMC 9518831. PMID 35922506. S2CID 251316299.
- ^ Vrselja, Zvonimir; Daniele, Stefano G.; Silbereis, John; Talpo, Francesca; Morozov, Yury M.; Sousa, André M. M.; Tanaka, Brian S.; Skarica, Mario; Pletikos, Mihovil; Kaur, Navjot; Zhuang, Zhen W.; Liu, Zhao; Alkawadri, Rafeed; Sinusas, Albert J.; Latham, Stephen R.; Waxman, Stephen G.; Sestan, Nenad (April 2019). "Restoration of brain circulation and cellular functions hours post-mortem". Nature. 568 (7752): 336–343. Bibcode:2019Natur.568..336V. doi:10.1038/s41586-019-1099-1. ISSN 1476-4687. PMC 6844189. PMID 30996318.
- ^ "Hydrogel that outperforms cartilage could be in human knees in 2023". New Atlas. 15 August 2022. Retrieved 16 September 2022.
- ^ Zhao, Jiacheng; Tong, Huayu; Kirillova, Alina; Koshut, William J.; Malek, Andrew; Brigham, Natasha C.; Becker, Matthew L.; Gall, Ken; Wiley, Benjamin J. (14 August 2022). "A Synthetic Hydrogel Composite with a Strength and Wear Resistance Greater than Cartilage". Advanced Functional Materials. 32 (41). doi:10.1002/adfm.202205662. S2CID 251417385. Retrieved 4 August 2022.
- ^ "Bioengineered cornea can restore sight to the blind and visually impaired". Linköping University. 11 August 2022. Retrieved 14 August 2022.
- ^ Rafat, Mehrdad; Jabbarvand, Mahmoud; Sharma, Namrata; Xeroudaki, Maria; Tabe, Shideh; Omrani, Raha; Thangavelu, Muthukumar; Mukwaya, Anthony; Fagerholm, Per; Lennikov, Anton; Askarizadeh, Farshad; Lagali, Neil (11 August 2022). "Bioengineered corneal tissue for minimally invasive vision restoration in advanced keratoconus in two clinical cohorts". Nature Biotechnology. 41 (1): 70–81. doi:10.1038/s41587-022-01408-w. ISSN 1546-1696. PMC 9849136. PMID 35953672.
- ^ "UBC researchers discover 'weak spot' across major COVID-19 variants". EurekAlert!. 18 August 2022. Retrieved 19 August 2022.
- ^ Mannar, Dhiraj; Saville, James W.; Sun, Zehua; Zhu, Xing; Marti, Michelle M.; Srivastava, Shanti S.; Berezuk, Alison M.; Zhou, Steven; Tuttle, Katharine S.; Sobolewski, Michele D.; Kim, Andrew; Treat, Benjamin R.; Da Silva Castanha, Priscila Mayrelle; Jacobs, Jana L.; Barratt-Boyes, Simon M.; Mellors, John W.; Dimitrov, Dimiter S.; Li, Wei; Subramaniam, Sriram (18 August 2022). "SARS-CoV-2 variants of concern: spike protein mutational analysis and epitope for broad neutralization". Nature Communications. 13 (1): 4696. Bibcode:2022NatCo..13.4696M. doi:10.1038/s41467-022-32262-8. PMC 9388680. PMID 35982054.
- ^ "New Antibody Neutralizes All Known COVID-19 Variants". IFLScience. Retrieved 16 September 2022.
- ^ Luo, Sai; Zhang, Jun; Kreutzberger, Alex J.B.; Eaton, Amanda; Edwards, Robert J.; Jing, Changbin; Dai, Hai-Qiang; Sempowski, Gregory D.; Cronin, Kenneth; Parks, Robert; Ye, Adam Yongxin; Mansouri, Katayoun; Barr, Maggie; Pishesha, Novalia; Williams, Aimee Chapdelaine; Vieira Francisco, Lucas; Saminathan, Anand; Peng, Hanqin; Batra, Himanshu; Bellusci, Lorenza; Khurana, Surender; Alam, S. Munir; Montefiori, David C.; Saunders, Kevin O.; Tian, Ming; Ploegh, Hidde; Kirchhausen, Tom; Chen, Bing; Haynes, Barton F.; Alt, Frederick W. (11 August 2022). "An Antibody from Single Human VH-rearranging Mouse Neutralizes All SARS-CoV-2 Variants Through BA.5 by Inhibiting Membrane Fusion". Science Immunology. 7 (76): eadd5446. doi:10.1126/sciimmunol.add5446. ISSN 2470-9468. PMC 9407951. PMID 35951767.
- University press release: "One for All?". Harvard Medical School. Retrieved 16 September 2022.
- ^ "World's first mini organ transportation to a patient with ulcerative colitis". Tokyo Medical and Dental University via medicalxpress.com. Retrieved 18 September 2022.
- ^ Watanabe, Satoshi; Kobayashi, Sakurako; Ogasawara, Nobuhiko; Okamoto, Ryuichi; Nakamura, Tetsuya; Watanabe, Mamoru; Jensen, Kim B.; Yui, Shiro (March 2022). "Transplantation of intestinal organoids into a mouse model of colitis". Nature Protocols. 17 (3): 649–671. doi:10.1038/s41596-021-00658-3. ISSN 1750-2799. PMID 35110738. S2CID 246488596.
- ^ Williams, Sarah. "A cellular engineering breakthrough: High-yield CRISPR without viral vectors". Gladstone Institutes. Retrieved 15 September 2022.
- ^ Shy, Brian R.; Vykunta, Vivasvan S.; Ha, Alvin; Talbot, Alexis; Roth, Theodore L.; Nguyen, David N.; Pfeifer, Wolfgang G.; Chen, Yan Yi; Blaeschke, Franziska; Shifrut, Eric; Vedova, Shane; Mamedov, Murad R.; Chung, Jing-Yi Jing; Li, Hong; Yu, Ruby; Wu, David; Wolf, Jeffrey; Martin, Thomas G.; Castro, Carlos E.; Ye, Lumeng; Esensten, Jonathan H.; Eyquem, Justin; Marson, Alexander (25 August 2022). "High-yield genome engineering in primary cells using a hybrid ssDNA repair template and small-molecule cocktails". Nature Biotechnology. 41 (4): 521–531. doi:10.1038/s41587-022-01418-8. ISSN 1546-1696. PMC 10065198. PMID 36008610. S2CID 251843150.
- ^ a b de Jonge, Eline F.; Peterse, Céline M.; Koelewijn, Jaap M.; van der Drift, Anne-Merel R.; van der Beek, Rudolf F. H. J.; Nagelkerke, Erwin; Lodder, Willemijn J. (15 December 2022). "The detection of monkeypox virus DNA in wastewater samples in the Netherlands". Science of the Total Environment. 852: 158265. Bibcode:2022ScTEn.85258265D. doi:10.1016/j.scitotenv.2022.158265. ISSN 0048-9697. PMC 9558568. PMID 36057309.
- ^ "Wastewater surveillance becomes more targeted in search for poliovirus, monkeypox and coronavirus". CBS News. Retrieved 18 September 2022.
- ^ Payne, Aaron; Kreidler, Mark (8 August 2022). "COVID sewage surveillance labs join the hunt for monkeypox". WOUB Public Media. Retrieved 18 September 2022.
- ^ "New malaria vaccine is world-changing, say scientists". BBC News. 8 September 2022. Retrieved 8 September 2022.
- ^ Datoo, M. S.; et al. (7 September 2022). "Efficacy and immunogenicity of R21/Matrix-M vaccine against clinical malaria after 2 years' follow-up in children in Burkina Faso: a phase 1/2b randomised controlled trial". The Lancet. Infectious Diseases. 22 (12): 1728–1736. doi:10.1016/S1473-3099(22)00442-X. PMID 36087586. S2CID 252149462. Retrieved 8 September 2022.
- ^ "New antiviral therapy may block COVID-19 transmission". Gladstone Institutes via medicalxpress.com. Retrieved 21 October 2022.
- ^ Chaturvedi, Sonali; Beutler, Nathan; Vasen, Gustavo; Pablo, Michael; Chen, Xinyue; Calia, Giuliana; Buie, Lauren; Rodick, Robert; Smith, Davey; Rogers, Thomas; Weinberger, Leor S. (27 September 2022). "A single-administration therapeutic interfering particle reduces SARS-CoV-2 viral shedding and pathogenesis in hamsters". Proceedings of the National Academy of Sciences. 119 (39): e2204624119. Bibcode:2022PNAS..11904624C. doi:10.1073/pnas.2204624119. ISSN 0027-8424. PMC 9522362. PMID 36074824.
- ^ "Two inhaled covid vaccines have been approved—but we don't know yet how good they are". MIT Technology Review. Retrieved 21 October 2022.
- ^ a b Waltz, Emily (7 September 2022). "China and India approve nasal COVID vaccines — are they a game changer?". Nature. 609 (7927): 450. Bibcode:2022Natur.609..450W. doi:10.1038/d41586-022-02851-0. PMID 36071228. S2CID 252121594.
- ^ Dhama, Kuldeep; Dhawan, Manish; Tiwari, Ruchi; Emran, Talha Bin; Mitra, Saikat; Rabaan, Ali A.; Alhumaid, Saad; Alawi, Zainab Al; Al Mutair, Abbas (30 November 2022). "COVID-19 intranasal vaccines: current progress, advantages, prospects, and challenges". Human Vaccines & Immunotherapeutics. 18 (5): 2045853. doi:10.1080/21645515.2022.2045853. ISSN 2164-5515. PMC 8935456. PMID 35258416.
- ^ "Algae micromotors join the ranks for targeted drug delivery". Chemical & Engineering News. Retrieved 19 October 2022.
- ^ Zhang, Fangyu; Zhuang, Jia; Li, Zhengxing; Gong, Hua; de Ávila, Berta Esteban-Fernández; Duan, Yaou; Zhang, Qiangzhe; Zhou, Jiarong; Yin, Lu; Karshalev, Emil; Gao, Weiwei; Nizet, Victor; Fang, Ronnie H.; Zhang, Liangfang; Wang, Joseph (22 September 2022). "Nanoparticle-modified microrobots for in vivo antibiotic delivery to treat acute bacterial pneumonia". Nature Materials. 21 (11): 1324–1332. Bibcode:2022NatMa..21.1324Z. doi:10.1038/s41563-022-01360-9. ISSN 1476-4660. PMC 9633541. PMID 36138145.
- ^ Zhang, Fangyu; Li, Zhengxing; Duan, Yaou; Abbas, Amal; Mundaca-Uribe, Rodolfo; Yin, Lu; Luan, Hao; Gao, Weiwei; Fang, Ronnie H.; Zhang, Liangfang; Wang, Joseph (28 September 2022). "Gastrointestinal tract drug delivery using algae motors embedded in a degradable capsule". Science Robotics. 7 (70): eabo4160. doi:10.1126/scirobotics.abo4160. ISSN 2470-9476. PMC 9884493. PMID 36170380. S2CID 252598190.
- ^ "This robotic pill clears mucus from the gut to deliver meds". Science News. 28 September 2022. Retrieved 19 October 2022.
- ^ Srinivasan, Shriya S.; Alshareef, Amro; Hwang, Alexandria V.; Kang, Ziliang; Kuosmanen, Johannes; Ishida, Keiko; Jenkins, Joshua; Liu, Sabrina; Madani, Wiam Abdalla Mohammed; Lennerz, Jochen; Hayward, Alison; Morimoto, Josh; Fitzgerald, Nina; Langer, Robert; Traverso, Giovanni (28 September 2022). "RoboCap: Robotic mucus-clearing capsule for enhanced drug delivery in the gastrointestinal tract". Science Robotics. 7 (70): eabp9066. doi:10.1126/scirobotics.abp9066. ISSN 2470-9476. PMC 10034646. PMID 36170378. S2CID 252597856.
- ^ Schmidt, Christine K.; Medina-Sánchez, Mariana; Edmondson, Richard J.; Schmidt, Oliver G. (5 November 2020). "Engineering microrobots for targeted cancer therapies from a medical perspective". Nature Communications. 11 (1): 5618. Bibcode:2020NatCo..11.5618S. doi:10.1038/s41467-020-19322-7. ISSN 2041-1723. PMC 7645678. PMID 33154372.
- ^ Thompson, Joanna. "These tiny magnetic robots can infiltrate tumors — and maybe destroy cancer". Inverse. Retrieved 21 November 2022.
- ^ Gwisai, T.; Mirkhani, N.; Christiansen, M. G.; Nguyen, T. T.; Ling, V.; Schuerle, S. (26 October 2022). "Magnetic torque–driven living microrobots for increased tumor infiltration". Science Robotics. 7 (71): eabo0665. bioRxiv 10.1101/2022.01.03.473989. doi:10.1126/scirobotics.abo0665. ISSN 2470-9476. PMID 36288270. S2CID 253160428.
- ^ "Lab-grown blood given to people in world-first clinical trial". BBC News. 7 November 2022. Retrieved 7 November 2022.
- ^ "First ever clinical trial of laboratory grown red blood cells being transfused into another person underway". University of Bristol. 7 November 2022. Retrieved 7 November 2022.
- ^ McDonnell, Sarah. "New CRISPR-based tool inserts large DNA sequences at desired sites in cells". Massachusetts Institute of Technology via phys.org. Retrieved 18 December 2022.
- ^ Yarnall, Matthew T. N.; Ioannidi, Eleonora I.; Schmitt-Ulms, Cian; Krajeski, Rohan N.; Lim, Justin; Villiger, Lukas; Zhou, Wenyuan; Jiang, Kaiyi; Garushyants, Sofya K.; Roberts, Nathaniel; Zhang, Liyang; Vakulskas, Christopher A.; Walker, John A.; Kadina, Anastasia P.; Zepeda, Adrianna E.; Holden, Kevin; Ma, Hong; Xie, Jun; Gao, Guangping; Foquet, Lander; Bial, Greg; Donnelly, Sara K.; Miyata, Yoshinari; Radiloff, Daniel R.; Henderson, Jordana M.; Ujita, Andrew; Abudayyeh, Omar O.; Gootenberg, Jonathan S. (24 November 2022). "Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases". Nature Biotechnology. 41 (4): 500–512. bioRxiv 10.1101/2021.11.01.466786. doi:10.1038/s41587-022-01527-4. ISSN 1546-1696. PMC 10257351. PMID 36424489. S2CID 253879386.
- ^ Grimes, Brittney (8 December 2022). "A novel blood test can detect Alzheimer's disease early". Interesting Engineering. Retrieved 17 January 2023.
- ^ Shea, Dylan; Colasurdo, Elizabeth; Smith, Alec; Paschall, Courtnie; Jayadev, Suman; Keene, C. Dirk; Galasko, Douglas; Ko, Andrew; Li, Ge; Peskind, Elaine; Daggett, Valerie (13 December 2022). "SOBA: Development and testing of a soluble oligomer binding assay for detection of amyloidogenic toxic oligomers". Proceedings of the National Academy of Sciences. 119 (50): e2213157119. Bibcode:2022PNAS..11913157S. doi:10.1073/pnas.2213157119. ISSN 0027-8424. PMC 9897489. PMID 36490316. S2CID 254518036.
- ^ "Scientists develop blood test for Alzheimer's disease". The Guardian. 28 December 2022. Retrieved 18 January 2023.
- ^ Gonzalez-Ortiz, Fernando; Turton, Michael; Kac, Przemysław R; Smirnov, Denis; Premi, Enrico; Ghidoni, Roberta; Benussi, Luisa; Cantoni, Valentina; Saraceno, Claudia; Rivolta, Jasmine; Ashton, Nicholas J; Borroni, Barbara; Galasko, Douglas; Harrison, Peter; Zetterberg, Henrik; Blennow, Kaj; Karikari, Thomas K (27 December 2022). "Brain-derived tau: a novel blood-based biomarker for Alzheimer's disease-type neurodegeneration". Brain. 146 (3): 1152–1165. doi:10.1093/brain/awac407. PMC 9976981. PMID 36572122.
- ^ Firtina, Nergis (1 February 2023). "Semi-living 'cyborg cells' could treat cancer, suggests new study". Interesting Engineering. Archived from the original on 15 February 2023. Retrieved 15 February 2023.
- ^ Contreras-Llano, Luis E.; Liu, Yu-Han; Henson, Tanner; Meyer, Conary C.; Baghdasaryan, Ofelya; Khan, Shahid; Lin, Chi-Long; Wang, Aijun; Hu, Che-Ming J.; Tan, Cheemeng (11 January 2023). "Engineering Cyborg Bacteria Through Intracellular Hydrogelation". Advanced Science. 10 (9): 2204175. doi:10.1002/advs.202204175. ISSN 2198-3844. PMC 10037956. PMID 36628538.
- ^ "Israeli scientists develop sniffing robot with locust antennae". Reuters. 7 February 2023. Retrieved 28 March 2023.
- ^ Neta, Shvil; Ariel, Golan; Yossi, Yovel; Amir, Ayali; Ben, Maoz M. (1 February 2023). "The Locust antenna as an odor discriminator". Biosensors and Bioelectronics. 221: 114919. doi:10.1016/j.bios.2022.114919. ISSN 0956-5663. PMID 36446198. S2CID 253790885.
- ^ Hoffmann, Stefan A.; Diggans, James; Densmore, Douglas; Dai, Junbiao; Knight, Tom; Leproust, Emily; Boeke, Jef D.; Wheeler, Nicole; Cai, Yizhi (17 March 2023). "Safety by design: Biosafety and biosecurity in the age of synthetic genomics". iScience. 26 (3): 106165. Bibcode:2023iSci...26j6165H. doi:10.1016/j.isci.2023.106165. ISSN 2589-0042. PMC 9988571. PMID 36895643.
- ^ Firtina, Nergis (24 February 2023). "3D printable ink containing bacteria will be used in many fields". interestingengineering.com. Retrieved 27 March 2023.
- ^ Hirsch, Matteo; Lucherini, Lorenzo; Zhao, Ran; Clarà Saracho, Alexandra; Amstad, Esther (1 January 2023). "3D printing of living structural biocomposites". Materials Today. 62: 21–32. doi:10.1016/j.mattod.2023.02.001. ISSN 1369-7021.
- ^ "A gel cocktail uses the body's sugars to 'grow' electrodes in living fish". Science News. 23 February 2023. Retrieved 26 March 2023.
- ^ Strakosas, Xenofon; Biesmans, Hanne; Abrahamsson, Tobias; Hellman, Karin; Ejneby, Malin Silverå; Donahue, Mary J.; Ekström, Peter; Ek, Fredrik; Savvakis, Marios; Hjort, Martin; Bliman, David; Linares, Mathieu; Lindholm, Caroline; Stavrinidou, Eleni; Gerasimov, Jennifer Y.; Simon, Daniel T.; Olsson, Roger; Berggren, Magnus (24 February 2023). "Metabolite-induced in vivo fabrication of substrate-free organic bioelectronics". Science. 379 (6634): 795–802. Bibcode:2023Sci...379..795S. doi:10.1126/science.adc9998. ISSN 0036-8075. PMID 36821679. S2CID 257103107.
- University press release: "Electrodes grown in the brain – paving the way for future therapies for neurological disorders". Linköping University via EurekAlert!. 23 February 2023. Retrieved 27 February 2023.
- ^ Strickland, Ashley. "Move over, artificial intelligence. Scientists announce a new 'organoid intelligence' field". CNN. Retrieved 25 March 2023.
- ^ Smirnova, Lena; Caffo, Brian S.; Gracias, David H.; Huang, Qi; Morales Pantoja, Itzy E.; Tang, Bohao; Zack, Donald J.; Berlinicke, Cynthia A.; Boyd, J. Lomax; Harris, Timothy D.; Johnson, Erik C.; Kagan, Brett J.; Kahn, Jeffrey; Muotri, Alysson R.; Paulhamus, Barton L.; Schwamborn, Jens C.; Plotkin, Jesse; Szalay, Alexander S.; Vogelstein, Joshua T.; Worley, Paul F.; Hartung, Thomas (28 February 2023). "Organoid intelligence (OI): the new frontier in biocomputing and intelligence-in-a-dish". Frontiers in Science. 1: 1017235. doi:10.3389/fsci.2023.1017235. ISSN 2813-6330.
- ^ "Human brain cells used as living AIs to solve mathematical equations". New Scientist. Retrieved 18 April 2023.
- ^ Cai, Hongwei; Ao, Zheng; Tian, Chunhui; Wu, Zhuhao; Liu, Hongcheng; Tchieu, Jason; Gu, Mingxia; Mackie, Ken; Guo, Feng (1 March 2023). "Brain Organoid Computing for Artificial Intelligence". BioRxiv: The Preprint Server for Biology: 2023.02.28.530502. doi:10.1101/2023.02.28.530502. PMC 10002682. PMID 36909615.
- ^ Yu, Andi (9 March 2023). "Scientists have found an enzyme that can make electricity out of tiny amounts of hydrogen". ABC News. Retrieved 20 April 2023.
- ^ Grinter, Rhys; Kropp, Ashleigh; Venugopal, Hari; Senger, Moritz; Badley, Jack; Cabotaje, Princess R.; Jia, Ruyu; Duan, Zehui; Huang, Ping; Stripp, Sven T.; Barlow, Christopher K.; Belousoff, Matthew; Shafaat, Hannah S.; Cook, Gregory M.; Schittenhelm, Ralf B.; Vincent, Kylie A.; Khalid, Syma; Berggren, Gustav; Greening, Chris (March 2023). "Structural basis for bacterial energy extraction from atmospheric hydrogen". Nature. 615 (7952): 541–547. Bibcode:2023Natur.615..541G. doi:10.1038/s41586-023-05781-7. ISSN 1476-4687. PMC 10017518. PMID 36890228.
- ^ Wickelgren, Ingrid. "Bacterial 'Nanosyringe' Could Deliver Gene Therapy to Human Cells". Scientific American. Retrieved 20 April 2023.
- ^ Kreitz, Joseph; Friedrich, Mirco J.; Guru, Akash; Lash, Blake; Saito, Makoto; Macrae, Rhiannon K.; Zhang, Feng (April 2023). "Programmable protein delivery with a bacterial contractile injection system". Nature. 616 (7956): 357–364. Bibcode:2023Natur.616..357K. doi:10.1038/s41586-023-05870-7. ISSN 1476-4687. PMC 10097599. PMID 36991127.
- ^ "Auf dem Weg in die Matrix: Mikroboboter loggt sich in neuronale Netzwerke ein | MDR.DE". MDR (in German). Retrieved 19 April 2023.
- ^ Kim, Eunhee; Jeon, Sungwoong; Yang, Yoon-Sil; Jin, Chaewon; Kim, Jin-young; Oh, Yong-Seok; Rah, Jong-Cheol; Choi, Hongsoo (March 2023). "A Neurospheroid-Based Microrobot for Targeted Neural Connections in a Hippocampal Slice". Advanced Materials. 35 (13): 2208747. Bibcode:2023AdM....3508747K. doi:10.1002/adma.202208747. ISSN 0935-9648. PMID 36640750. S2CID 257774877.
- University press release: "Microrobot capable of forming neural networks and sectioning hippocampal tissues in vitro". Daegu Gyeongbuk Institute of Science and Technology via medicalxpress.com. Retrieved 19 April 2023.
- ^ Yang, Yaoheng; Yuan, Jinyun; Field, Rachael L.; Ye, Dezhuang; Hu, Zhongtao; Xu, Kevin; Xu, Lu; Gong, Yan; Yue, Yimei; Kravitz, Alexxai V.; Bruchas, Michael R.; Cui, Jianmin; Brestoff, Jonathan R.; Chen, Hong (May 2023). "Induction of a torpor-like hypothermic and hypometabolic state in rodents by ultrasound". Nature Metabolism. 5 (5): 789–803. doi:10.1038/s42255-023-00804-z. ISSN 2522-5812. PMC 10229429. PMID 37231250.
- ^ Heidt, Amanda (30 June 2023). "Meet 'Fanzor,' the 1st CRISPR-like system found in complex life". livescience.com. Retrieved 26 July 2023.
- ^ Saito, Makoto; Xu, Peiyu; Faure, Guilhem; Maguire, Samantha; Kannan, Soumya; Altae-Tran, Han; Vo, Sam; Desimone, AnAn; Macrae, Rhiannon K.; Zhang, Feng (28 June 2023). "Fanzor is a eukaryotic programmable RNA-guided endonuclease". Nature. 620 (7974): 660–668. Bibcode:2023Natur.620..660S. doi:10.1038/s41586-023-06356-2. ISSN 1476-4687. PMC 10432273. PMID 37380027. S2CID 259286102.
- ^ "Eukaryotes Have CRISPR-Like Systems That Can Edit Genomes, MIT Teams Report". GenomeWeb. 28 June 2023. Retrieved 26 July 2023.
- ^ Jiang, Kaiyi; Lim, Justin; Sgrizzi, Samantha; Trinh, Michael; Kayabolen, Alisan; Yutin, Natalya; Koonin, Eugene V.; Abudayyeh, Omar O.; Gootenberg, Jonathan S. (2023). "Programmable RNA-guided endonucleases are widespread in eukaryotes and their viruses". BioRxiv: The Preprint Server for Biology. doi:10.1101/2023.06.13.544871. PMC 10312701. PMID 37398409.
- ^ Mathiesen, Barbara K.; Miyakoshi, Leo M.; Cederroth, Christopher R.; Tserga, Evangelia; Versteegh, Corstiaen; Bork, Peter A. R.; Hauglund, Natalie L.; Gomolka, Ryszard Stefan; Mori, Yuki; Edvall, Niklas K.; Rouse, Stephanie; Møllgård, Kjeld; Holt, Jeffrey R.; Nedergaard, Maiken; Canlon, Barbara (28 June 2023). "Delivery of gene therapy through a cerebrospinal fluid conduit to rescue hearing in adult mice". Science Translational Medicine. 15 (702): eabq3916. doi:10.1126/scitranslmed.abq3916. ISSN 1946-6234. PMID 37379370. S2CID 259275398.
- University press release: "An unexpected doorway into the ear opens new possibilities for hearing restoration". University of Rochester Medical Center via medicalxpress.com. Retrieved 8 August 2023.
- ^ Ferreira, Becky (11 July 2023). "Scientists Create 'Biological Camera' That Stores Images in DNA". Vice. Retrieved 31 August 2023.
- ^ Lim, Cheng Kai; Yeoh, Jing Wui; Kunartama, Aurelius Andrew; Yew, Wen Shan; Poh, Chueh Loo (3 July 2023). "A biological camera that captures and stores images directly into DNA". Nature Communications. 14 (1): 3921. Bibcode:2023NatCo..14.3921L. doi:10.1038/s41467-023-38876-w. ISSN 2041-1723. PMC 10318082. PMID 37400476.
- ^ "Building a better forest tree with CRISPR gene editing". EurekAlert!. 13 July 2023. Retrieved 15 July 2023.
- ^ Sulis, Daniel B.; Jiang, Xiao; Yang, Chenmin; Marques, Barbara M.; Matthews, Megan L.; Miller, Zachary; Lan, Kai; Cofre-Vega, Carlos; Liu, Baoguang; Sun, Runkun; Sederoff, Henry; Bing, Ryan G.; Sun, Xiaoyan; Williams, Cranos M.; Jameel, Hasan; Phillips, Richard; Chang, Hou-min; Peszlen, Ilona; Huang, Yung-Yun; Li, Wei; Kelly, Robert M.; Sederoff, Ronald R.; Chiang, Vincent L.; Barrangou, Rodolphe; Wang, Jack P. (14 July 2023). "Multiplex CRISPR editing of wood for sustainable fiber production". Science. 381 (6654): 216–221. Bibcode:2023Sci...381..216S. doi:10.1126/science.add4514. PMC 10542590. PMID 37440632. S2CID 259844575.
- ^ Mi, Junpeng; Zhou, Yizhong; Ma, Sanyuan; Zhou, Xingping; Xu, Shouying; Yang, Yuchen; Sun, Yuan; Xia, Qingyou; Zhu, Hongnian; Wang, Suyang; Tian, Luyang; Meng, Qing (October 2023). "High-strength and ultra-tough whole spider silk fibers spun from transgenic silkworms". Matter. 6 (10): 3661–3683. doi:10.1016/j.matt.2023.08.013. S2CID 262157827.
- ^ Leslie, Mitch. "Synthetic yeast project unveils cells with 50% artificial DNA". Science.org. Retrieved 16 February 2024.
- ^ Schindler, Daniel; Walker, Roy S.K.; Jiang, Shuangying; Brooks, Aaron N.; Wang, Yun; Müller, Carolin A.; Cockram, Charlotte; Luo, Yisha; García, Alicia; Schraivogel, Daniel; Mozziconacci, Julien; Pena, Noah; Assari, Mahdi; Sánchez Olmos, María del Carmen; Zhao, Yu; Ballerini, Alba; Blount, Benjamin A.; Cai, Jitong; Ogunlana, Lois; Liu, Wei; Jönsson, Katarina; Abramczyk, Dariusz; Garcia-Ruiz, Eva; Turowski, Tomasz W.; Swidah, Reem; Ellis, Tom; Pan, Tao; Antequera, Francisco; Shen, Yue; Nieduszynski, Conrad A.; Koszul, Romain; Dai, Junbiao; Steinmetz, Lars M.; Boeke, Jef D.; Cai, Yizhi (November 2023). "Design, construction, and functional characterization of a tRNA neochromosome in yeast". Cell. 186 (24): 5237–5253.e22. doi:10.1016/j.cell.2023.10.015. hdl:10261/347442. PMID 37944512.
- ^ Altae-Tran, Han; Kannan, Soumya; Suberski, Anthony J.; Mears, Kepler S.; Demircioglu, F. Esra; Moeller, Lukas; Kocalar, Selin; Oshiro, Rachel; Makarova, Kira S.; Macrae, Rhiannon K.; Koonin, Eugene V.; Zhang, Feng (24 November 2023). "Uncovering the functional diversity of rare CRISPR-Cas systems with deep terascale clustering" (PDF). Science. 382 (6673): eadi1910. Bibcode:2023Sci...382.....A. doi:10.1126/science.adi1910. ISSN 0036-8075. PMC 10910872. PMID 37995242. S2CID 265381117.
- ^ Gumuskaya, Gizem; Srivastava, Pranjal; Cooper, Ben G.; Lesser, Hannah; Semegran, Ben; Garnier, Simon; Levin, Michael (January 2024). "Motile Living Biobots Self-Construct from Adult Human Somatic Progenitor Seed Cells". Advanced Science. 11 (4): e2303575. doi:10.1002/advs.202303575. ISSN 2198-3844. PMC 10811512. PMID 38032125.
- ^ a b Aisala, Heikki; Kärkkäinen, Elviira; Jokinen, Iina; Seppänen-Laakso, Tuulikki; Rischer, Heiko (29 November 2023). "Proof of Concept for Cell Culture-Based Coffee". Journal of Agricultural and Food Chemistry. 71 (47): 18478–18488. Bibcode:2023JAFC...7118478A. doi:10.1021/acs.jafc.3c04503. ISSN 0021-8561. PMC 10690795. PMID 37972222.
- ^ Jaloliddin Khushvakov, Sebastian E. W. Opitz, Nadja Plüss, Jasmin Sun, Linda Josefine Manthey, Heiko Rischer, and Chahan Yeretzian (2024). "Analytical Platform to Determine Similarities and Dissimilarities between Cell-Cultured Coffee and Farm-Grown Coffee". Journal of Food Science & Technology. 4 (8): 1890–1903. doi:10.1021/acsfoodscitech.4c00238.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Madani, Ali; Krause, Ben; Greene, Eric R.; Subramanian, Subu; Mohr, Benjamin P.; Holton, James M.; Olmos, Jose Luis; Xiong, Caiming; Sun, Zachary Z.; Socher, Richard; Fraser, James S.; Naik, Nikhil (26 January 2023). "Large language models generate functional protein sequences across diverse families". Nature Biotechnology. 41 (8): 1099–1106. doi:10.1038/s41587-022-01618-2. ISSN 1546-1696. PMC 10400306. PMID 36702895. S2CID 256304602.
- ^ Ichikawa, David M.; Abdin, Osama; Alerasool, Nader; Kogenaru, Manjunatha; Mueller, April L.; Wen, Han; Giganti, David O.; Goldberg, Gregory W.; Adams, Samantha; Spencer, Jeffrey M.; Razavi, Rozita; Nim, Satra; Zheng, Hong; Gionco, Courtney; Clark, Finnegan T.; Strokach, Alexey; Hughes, Timothy R.; Lionnet, Timothee; Taipale, Mikko; Kim, Philip M.; Noyes, Marcus B. (26 January 2023). "A universal deep-learning model for zinc finger design enables transcription factor reprogramming". Nature Biotechnology. 41 (8): 1117–1129. doi:10.1038/s41587-022-01624-4. ISSN 1546-1696. PMC 10421740. PMID 36702896.
- ^ Engineering, Interesting (9 March 2023). "Mycelium beef steaks and poultry whole-cuts see explosive retail growth". interestingengineering.com. Retrieved 23 April 2023.
- ^ Papadopoulos, Loukia (19 March 2023). "'Green-life technology': Biodegradable, recyclable glass is finally here". interestingengineering.com. Retrieved 23 April 2023.
- ^ Xing, Ruirui; Yuan, Chengqian; Fan, Wei; Ren, Xiaokang; Yan, Xuehai (15 March 2023). "Biomolecular glass with amino acid and peptide nanoarchitectonics". Science Advances. 9 (11): eadd8105. Bibcode:2023SciA....9D8105X. doi:10.1126/sciadv.add8105. ISSN 2375-2548. PMC 10022897. PMID 36930715.
- ^ McFadden, Christopher (23 March 2023). "Instant beer powder is here thanks to a German monastic brewery". interestingengineering.com. Retrieved 23 April 2023.
- ^ Dixit, Mrigakshi (3 April 2023). "New coconut, lemon material could be used to heat and cool our homes". interestingengineering.com. Retrieved 23 April 2023.
- ^ Montanari, Céline; Chen, Hui; Lidfeldt, Matilda; Gunnarsson, Josefin; Olsén, Peter; Berglund, Lars A. (27 March 2023). "Sustainable Thermal Energy Batteries from Fully Bio-Based Transparent Wood". Small. 19 (28): 2301262. doi:10.1002/smll.202301262. ISSN 1613-6810. PMID 36970834.
- ^ Carrington, Damian (28 March 2023). "Meatball from long-extinct mammoth created by food firm". The Guardian. Retrieved 23 April 2023.
- ^ Singer, Peter (24 May 2023). "The Meat Paradox". The Atlantic. Retrieved 28 May 2023.
- ^ Bryce, Emma (21 April 2023). "Lab-grown meat gets a key missing ingredient: 3D Fat". Retrieved 28 May 2023.
- ^ Yuen Jr, John Se Kit; Saad, Michael K; Xiang, Ning; Barrick, Brigid M; DiCindio, Hailey; Li, Chunmei; Zhang, Sabrina W; Rittenberg, Miriam; Lew, Emily T; Zhang, Kevin Lin; Leung, Glenn; Pietropinto, Jaymie A; Kaplan, David L (4 April 2023). "Aggregating in vitro-grown adipocytes to produce macroscale cell-cultured fat tissue with tunable lipid compositions for food applications". eLife. 12: e82120. doi:10.7554/eLife.82120. ISSN 2050-084X. PMC 10072877. PMID 37014056.
- ^ Jiang, Xiaoxiao; Yan, Chunlong; Zhang, Hanlin; Chen, Li; Jiang, Rui; Zheng, Kexin; Jin, Wanzhu; Ma, Huijuan; Liu, Xiaomeng; Dong, Meng (11 April 2023). "Oral Probiotic Expressing Human Ethanol Dehydrogenase Attenuates Damage Caused by Acute Alcohol Consumption in Mice". Microbiology Spectrum. 11 (3): e0429422. doi:10.1128/spectrum.04294-22. ISSN 2165-0497. PMC 10269551. PMID 37039510.
- ^ Hao, Liangliang; Zhao, Renee T.; Welch, Nicole L.; Tan, Edward Kah Wei; Zhong, Qian; Harzallah, Nour Saida; Ngambenjawong, Chayanon; Ko, Henry; Fleming, Heather E.; Sabeti, Pardis C.; Bhatia, Sangeeta N. (24 April 2023). "CRISPR-Cas-amplified urinary biomarkers for multiplexed and portable cancer diagnostics". Nature Nanotechnology. 18 (7): 798–807. Bibcode:2023NatNa..18..798H. doi:10.1038/s41565-023-01372-9. ISSN 1748-3395. PMC 10359190. PMID 37095220.
- ^ Dama, Adam C.; Kim, Kevin S.; Leyva, Danielle M.; Lunkes, Annamarie P.; Schmid, Noah S.; Jijakli, Kenan; Jensen, Paul A. (June 2023). "BacterAI maps microbial metabolism without prior knowledge". Nature Microbiology. 8 (6): 1018–1025. doi:10.1038/s41564-023-01376-0. ISSN 2058-5276. PMID 37142775. S2CID 258508291.
- University press release: "AI could run a million microbial experiments per year". University of Michigan News. 4 May 2023. Retrieved 25 June 2023.
- ^ Theodoris, Christina V.; Xiao, Ling; Chopra, Anant; Chaffin, Mark D.; Al Sayed, Zeina R.; Hill, Matthew C.; Mantineo, Helene; Brydon, Elizabeth M.; Zeng, Zexian; Liu, X. Shirley; Ellinor, Patrick T. (June 2023). "Transfer learning enables predictions in network biology". Nature. 618 (7965): 616–624. Bibcode:2023Natur.618..616T. doi:10.1038/s41586-023-06139-9. ISSN 1476-4687. PMC 10949956. PMID 37258680. S2CID 259002047.
- Lay summary: Williams, Sarah C. P. "Artificial intelligence system predicts consequences of gene modifications". Gladstone Institutes via medicalxpress.com. Retrieved 25 June 2023.
- ^ Thompson, Joanna. "Lab-Grown Meat Approved for Sale: What You Need to Know". Scientific American. Retrieved 27 July 2023.
- ^ "Soya beans made more meat-like by adding genes for pig proteins". New Scientist. Retrieved 27 July 2023.
- ^ Watson, Joseph L.; Juergens, David; Bennett, Nathaniel R.; Trippe, Brian L.; Yim, Jason; Eisenach, Helen E.; Ahern, Woody; Borst, Andrew J.; Ragotte, Robert J.; Milles, Lukas F.; Wicky, Basile I. M.; Hanikel, Nikita; Pellock, Samuel J.; Courbet, Alexis; Sheffler, William; Wang, Jue; Venkatesh, Preetham; Sappington, Isaac; Torres, Susana Vázquez; Lauko, Anna; De Bortoli, Valentin; Mathieu, Emile; Ovchinnikov, Sergey; Barzilay, Regina; Jaakkola, Tommi S.; DiMaio, Frank; Baek, Minkyung; Baker, David (August 2023). "De novo design of protein structure and function with RFdiffusion". Nature. 620 (7976): 1089–1100. Bibcode:2023Natur.620.1089W. doi:10.1038/s41586-023-06415-8. ISSN 1476-4687. PMC 10468394. PMID 37433327.
- ^ Puthussery, Joseph V.; Ghumra, Dishit P.; McBrearty, Kevin R.; Doherty, Brookelyn M.; Sumlin, Benjamin J.; Sarabandi, Amirhossein; Mandal, Anushka Garg; Shetty, Nishit J.; Gardiner, Woodrow D.; Magrecki, Jordan P.; Brody, David L.; Esparza, Thomas J.; Bricker, Traci L.; Boon, Adrianus C. M.; Yuede, Carla M.; Cirrito, John R.; Chakrabarty, Rajan K. (10 July 2023). "Real-time environmental surveillance of SARS-CoV-2 aerosols". Nature Communications. 14 (1): 3692. Bibcode:2023NatCo..14.3692P. doi:10.1038/s41467-023-39419-z. ISSN 2041-1723. PMC 10333287. PMID 37429842.
- ^ Hu, Jiacheng; Sun, Yu; Li, Boshu; Liu, Zhen; Wang, Zhiwei; Gao, Qiang; Guo, Mengyue; Liu, Guanwen; Zhao, Kevin Tianmeng; Gao, Caixia (28 August 2023). "Strand-preferred base editing of organellar and nuclear genomes using CyDENT". Nature Biotechnology. 42 (6): 936–945. doi:10.1038/s41587-023-01910-9. ISSN 1546-1696. PMID 37640945. S2CID 261318917.
- Research institute press release: Nannan, Zhang. "Geneticists develop novel base editors". Chinese Academy of Sciences via phys.org. Retrieved 7 October 2023.
- ^ Li, Tianyu; Menegatti, Stefano; Crook, Nathan (14 September 2023). "Breakdown of polyethylene therepthalate microplastics under saltwater conditions using engineered Vibrio natriegens". AIChE Journal. 69 (12). Bibcode:2023AIChE..69E8228L. doi:10.1002/aic.18228. ISSN 0001-1541. S2CID 261929494.
- University press release: "Genetically Modified Bacteria Break Down Plastics in Saltwater". NC State University. 14 September 2023. Retrieved 16 September 2023.
- ^ "Ants can 'sniff out' cancer in urine, scientists find". Sky News. Archived from the original on 16 February 2023. Retrieved 16 February 2023.
- ^ Piqueret, Baptiste; Montaudon, Élodie; Devienne, Paul; Leroy, Chloé; Marangoni, Elisabetta; Sandoz, Jean-Christophe; d'Ettorre, Patrizia (25 January 2023). "Ants act as olfactory bio-detectors of tumours in patient-derived xenograft mice". Proceedings of the Royal Society B: Biological Sciences. 290 (1991): 20221962. doi:10.1098/rspb.2022.1962. ISSN 0962-8452. PMC 9874262. PMID 36695032.
- ^ Sanmarco, Liliana M.; Rone, Joseph M.; Polonio, Carolina M.; Fernandez Lahore, Gonzalo; Giovannoni, Federico; Ferrara, Kylynne; Gutierrez-Vazquez, Cristina; Li, Ning; Sokolovska, Anna; Plasencia, Agustin; Faust Akl, Camilo; Nanda, Payal; Heck, Evelin S.; Li, Zhaorong; Lee, Hong-Gyun; Chao, Chun-Cheih; Rejano-Gordillo, Claudia M.; Fonseca-Castro, Pedro H.; Illouz, Tomer; Linnerbauer, Mathias; Kenison, Jessica E.; Barilla, Rocky M.; Farrenkopf, Daniel; Stevens, Nikolas A.; Piester, Gavin; Chung, Elizabeth N.; Dailey, Lucas; Kuchroo, Vijay K.; Hava, David; Wheeler, Michael A.; Clish, Clary; Nowarski, Roni; Balsa, Eduardo; Lora, Jose M.; Quintana, Francisco J. (August 2023). "Lactate limits CNS autoimmunity by stabilizing HIF-1α in dendritic cells". Nature. 620 (7975): 881–889. Bibcode:2023Natur.620..881S. doi:10.1038/s41586-023-06409-6. hdl:10261/353060. ISSN 1476-4687. PMC 10725186. PMID 37558878. S2CID 260773893.
- Research hospital press release: "Engineered probiotic developed to treat multiple sclerosis". medicalxpress.com. Retrieved 7 October 2023.
- ^ Cooper, Robert M.; Wright, Josephine A.; Ng, Jia Q.; Goyne, Jarrad M.; Suzuki, Nobumi; Lee, Young K.; Ichinose, Mari; Radford, Georgette; Ryan, Feargal J.; Kumar, Shalni; Thomas, Elaine M.; Vrbanac, Laura; Knight, Rob; Woods, Susan L.; Worthley, Daniel L.; Hasty, Jeff (11 August 2023). "Engineered bacteria detect tumor DNA". Science. 381 (6658): 682–686. Bibcode:2023Sci...381..682C. bioRxiv 10.1101/2021.09.10.459858. doi:10.1126/science.adf3974. ISSN 0036-8075. PMC 10852993. PMID 37561843. S2CID 260776388.
- ^ "Scientists 3D-print hair follicles in lab-grown skin". Rensselaer Polytechnic Institute. 15 November 2023. Retrieved 16 November 2023.
- ^ "'It's perfect': World's first generative AI-designed COVID drug to start clinical trials". The Star. 23 February 2023. Retrieved 24 February 2023.
- ^ Zhang, He; Zhang, Liang; Lin, Ang; Xu, Congcong; Li, Ziyu; Liu, Kaibo; Liu, Boxiang; Ma, Xiaopin; Zhao, Fanfan; Jiang, Huiling; Chen, Chunxiu; Shen, Haifa; Li, Hangwen; Mathews, David H.; Zhang, Yujian; Huang, Liang (2 May 2023). "Algorithm for Optimized mRNA Design Improves Stability and Immunogenicity" (PDF). Nature. 621 (7978): 396–403. arXiv:2004.10177. Bibcode:2023Natur.621..396Z. doi:10.1038/s41586-023-06127-z. ISSN 1476-4687. PMC 10499610. PMID 37130545. S2CID 247594015.
- ^ "New superbug-killing antibiotic discovered using AI". BBC News. 25 May 2023. Retrieved 25 May 2023.
- ^ Liu, Gary; Catacutan, Denise B.; Rathod, Khushi; Swanson, Kyle; Jin, Wengong; Mohammed, Jody C.; Chiappino-Pepe, Anush; Syed, Saad A.; Fragis, Meghan; Rachwalski, Kenneth; Magolan, Jakob; Surette, Michael G.; Coombes, Brian K.; Jaakkola, Tommi; Barzilay, Regina; Collins, James J.; Stokes, Jonathan M. (25 May 2023). "Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii". Nature Chemical Biology. 19 (11): 1342–1350. doi:10.1038/s41589-023-01349-8. ISSN 1552-4469. PMID 37231267. S2CID 258909341.
- University press release: "Scientists use AI to find promising new antibiotic to fight evasive hospital superbug". McMaster University. 25 May 2023. Retrieved 25 May 2023.
- ^ "AI algorithms find drugs that could combat ageing". University of Edinburgh. 14 June 2023. Retrieved 16 June 2023.
- ^ Smer-Barreto, Vanessa; Quintanilla, Andrea; Elliott, Richard J. R.; Dawson, John C.; Sun, Jiugeng; Campa, Víctor M.; Lorente-Macías, Álvaro; Unciti-Broceta, Asier; Carragher, Neil O.; Acosta, Juan Carlos; Oyarzún, Diego A. (10 June 2023). "Discovery of senolytics using machine learning". Nature Communications. 14 (1): 3445. Bibcode:2023NatCo..14.3445S. doi:10.1038/s41467-023-39120-1. ISSN 2041-1723. PMC 10257182. PMID 37301862.
- ^ Arnold, Carrie (1 June 2023). "Inside the nascent industry of AI-designed drugs". Nature Medicine. 29 (6): 1292–1295. doi:10.1038/s41591-023-02361-0. PMID 37264208. S2CID 259025019.
- ^ "Using AI, MIT researchers identify a new class of antibiotic candidates". MIT. 20 December 2023. Retrieved 30 December 2023.
- ^ Wong, Felix; Zheng, Erica J.; Valeri, Jacqueline A.; Donghia, Nina M.; Anahtar, Melis N.; Omori, Satotaka; Li, Alicia; Cubillos-Ruiz, Andres; Krishnan, Aarti; Jin, Wengong; Manson, Abigail L.; Friedrichs, Jens; Helbig, Ralf; Hajian, Behnoush; Fiejtek, Dawid K.; Wagner, Florence F.; Soutter, Holly H.; Earl, Ashlee M.; Stokes, Jonathan M.; Renner, Lars D.; Collins, James J. (February 2024). "Discovery of a structural class of antibiotics with explainable deep learning" (PDF). Nature. 626 (7997): 177–185. Bibcode:2024Natur.626..177W. doi:10.1038/s41586-023-06887-8. ISSN 1476-4687. PMC 10866013. PMID 38123686.
- ^ "Researchers perform first successful transplant of functional cryopreserved rat kidney". University of Minnesota. 22 June 2023. Retrieved 25 June 2023.
- ^ Han, Zonghu; Rao, Joseph Sushil; Gangwar, Lakshya; Namsrai, Bat-Erdene; Pasek-Allen, Jacqueline L.; Etheridge, Michael L.; Wolf, Susan M.; Pruett, Timothy L.; Bischof, John C.; Finger, Erik B. (9 June 2023). "Vitrification and nanowarming enable long-term organ cryopreservation and life-sustaining kidney transplantation in a rat model". Nature Communications. 14 (1): 3407. Bibcode:2023NatCo..14.3407H. doi:10.1038/s41467-023-38824-8. ISSN 2041-1723. PMC 10256770. PMID 37296144.
- ^ Woodford, James. "Rice containing beef cells could make a sustainable meal". New Scientist. Retrieved 13 May 2024.
- ^ Park, Sohyeon; Lee, Milae; Jung, Sungwon; Lee, Hyun; Choi, Bumgyu; Choi, Moonhyun; Lee, Jeong Min; Yoo, Ki Hyun; Han, Dongoh; Lee, Seung Tae; Koh, Won-Gun; Bang, Geul; Hwang, Heeyoun; Lee, Sangmin; Hong, Jinkee (March 2024). "Rice grains integrated with animal cells: A shortcut to a sustainable food system". Matter. 7 (3): 1292–1313. doi:10.1016/j.matt.2024.01.015.
- ^ "Animal-free dairy round-up: Vivici, TurtleTree and New Culture". dairyreporter.com. 19 February 2024. Retrieved 13 May 2024.