Jump to content

General hypergeometric function

From Wikipedia, the free encyclopedia

In mathematics, a general hypergeometric function or Aomoto–Gelfand hypergeometric function is a generalization of the hypergeometric function that was introduced by Gelfand (1986). The general hypergeometric function is a function that is (more or less) defined on a Grassmannian, and depends on a choice of some complex numbers and signs.

References

[edit]
  • Gelfand, I. M. (1986), "General theory of hypergeometric functions", Doklady Akademii Nauk SSSR, 288 (1): 14–18, ISSN 0002-3264, MR 0841131 (English translation in collected papers, volume III.)
  • Aomoto, K. (1975), "Les équations aux différences linéaires et les intégrales des fonctions multiformes", J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 22, 271-229.