Jump to content

Casper Hoogenraad

From Wikipedia, the free encyclopedia
(Redirected from Draft:Casper Hoogenraad)
Casper Hoogenraad
Born (1973-01-31) January 31, 1973 (age 51)
NationalityDutch
CitizenshipThe Netherlands
Alma mater
Known forMolecular Neuroscience
Scientific career
FieldsNeuroscience
Institutions
Doctoral advisorFrank Grosveld, Chris De Zeeuw
Other academic advisorsMorgan Sheng
Websitehttps://www.gene.com/scientists/our-scientists/casper-hoogenraad

Casper Hoogenraad is a Dutch Cell Biologist who specializes in molecular neuroscience. The focus of his research is the basic molecular and cellular mechanisms that regulate the development and function of the brain. As of January 2020, he serves as Vice President of Neuroscience at Genentech Research and Early Development.

Biography and academic career

[edit]

Casper Hoogenraad was born in 1973 in Delft and grew up in Gouda, in The Netherlands. He received his B.S. in Biochemistry and M.S. in Molecular Biology from Utrecht University, and his doctorate in Cell Biology from the Erasmus University Rotterdam.[1] In 2002, Hoogenraad started his post-doctoral research at Massachusetts Institute of Technology in Cambridge, USA. In 2005, he returned to the Netherlands and joined the faculty of the Erasmus University Medical Center in Rotterdam as associate professor in the Department of Neuroscience. In 2011 he joined Utrecht University as full Professor of Molecular Neuroscience, and served as Chair of Cell Biology, Neurobiology and Biophysics for 10 years.[2] He is adjunct professor in Department of Biochemistry and Biophysics at University of California, San Francisco (UCSF).[3]

During his career, he discovered molecular mechanisms and cell biological processes that control cytoskeleton remodeling and cargo trafficking during the development and function of the brain. Hoogenraad published over 250 research articles, reviews and books, focused on synaptic function [4] [5] [6] [7] dendritic spine plasticity [8] [9] [10] [11] neuronal polarity [12] [13] [14] [15] organelle sorting mechanisms [16] [17] [18] [19] [20] the axon initial segment [21] [22] [23] [24] [25] cytoskeleton remodeling [26] [27] [28] [29] microtubule dynamics [30] [31] [32] [33] [34] fundamental transport mechanisms [35] [36] [37] [38] [39] axon regeneration [40] [41] and neurodegeneration.[42][43][44][45] See for full publication record - Pubmed,[46] Google Scholar,[47] ORCID[48]

Industrial career

[edit]

Hoogenraad was recruited to Genentech, a member of the Roche Group, as Senior Fellow and head of Neuroscience.[49] As of January 2020, he is Vice President of Neuroscience at Genentech Research and Early Development.[50] In this role, he is Head of the Neuroscience Department, responsible for research and drug discovery activities in Neuroscience and oversees Genentech's Neuroscience disease pipeline programs. He is also responsible for Translational Neuroscience, Neuroscience Stem Cell group, Department of Translational Imaging, and Department of Molecular Biology.

Honors and Awards

[edit]

He is an elected member of the European Molecular Biology Organization,[51] The Young Academy’ of the Royal Netherlands Academy of Sciences,[52] Young Academy of Europe [53] and the Editorial Board of Neuron[54] and The EMBO Journal.[55] In 2016 he became the 10th recipient of the IBRO-Kemali Prize, in the field of basic and clinical Neuroscience.[56] Some of his awards: NWO Talent stipendium, Human Frontiers Long-Term Fellowship, European Younng Investigators (EURYI) award, Dutch Innovational Research VIDI and VICI, European Research Council (ERC) - consolidator grant.

Science outreach

[edit]

In 2013, his laboratory made an animation movie, named 'A Day in the Life of a Motor Protein', which has received >1 million views on YouTube.[57] During this short five-minute movie, we follow John, a motor protein, who has to transport a large package through the narrow streets in the city of Utrecht, illustrating the importance and challenges of intracellular transport.

References

[edit]
  1. ^ PhD thesis. 12 September 2001. ISBN 978-90-77017-07-4. {{cite book}}: |newspaper= ignored (help)
  2. ^ "Utrecht lab". UU, Utrecht University. 20 December 2023.
  3. ^ "UCSF lab".
  4. ^ Sheng M, Hoogenraad CC (2007). "The postsynaptic architecture of excitatory synapses: a more quantitative view". Annu Rev Biochem. 76: 823–47. doi:10.1146/annurev.biochem.76.060805.160029. PMID 17243894.
  5. ^ Hoogenraad CC, Milstein AD, Ethell IM, Henkemeyer M, Sheng M (2005). "GRIP1 controls dendrite morphogenesis by regulating EphB receptor trafficking". Nat Neurosci. 8 (7): 906–15. doi:10.1038/nn1487. PMID 15965473. S2CID 23686585.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ Hoogenraad CC, Popa I, Futai K, Martinez-Sanchez E, Wulf PS, van Vlijmen T; et al. (2010). "Neuron specific Rab4 effector GRASP-1 coordinates membrane specialization and maturation of recycling endosomes". PLOS Biol. 8 (1): e1000283. doi:10.1371/journal.pbio.1000283. PMC 2808209. PMID 20098723.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. ^ Lindhout FW, Cao Y, Kevenaar JT, Bodzęta A, Stucchi R, Boumpoutsari MM; et al. (2019). "VAP-SCRN1 interaction regulates dynamic endoplasmic reticulum remodeling and presynaptic function". EMBO J. 38 (20): e101345. doi:10.15252/embj.2018101345. PMC 6792018. PMID 31441084.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. ^ Jaworski J, Kapitein LC, Gouveia SM, Dortland BR, Wulf PS, Grigoriev I; et al. (2009). "Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity". Neuron. 61 (1): 85–100. doi:10.1016/j.neuron.2008.11.013. PMID 19146815.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. ^ Hotulainen P, Hoogenraad CC (2010). "Actin in dendritic spines: connecting dynamics to function". J Cell Biol. 189 (4): 619–29. doi:10.1083/jcb.201003008. PMC 2872912. PMID 20457765.
  10. ^ Esteves da Silva M, Adrian M, Schätzle P, Lipka J, Watanabe T, Cho S; et al. (2015). "Positioning of AMPA Receptor-Containing Endosomes Regulates Synapse Architecture". Cell Rep. 13 (5): 933–43. doi:10.1016/j.celrep.2015.09.062. PMID 26565907.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. ^ Schätzle P, Esteves da Silva M, Tas RP, Katrukha EA, Hu HY, Wierenga CJ; et al. (2018). "Activity-Dependent Actin Remodeling at the Base of Dendritic Spines Promotes Microtubule Entry". Curr Biol. 28 (13): 2081–2093.e6. Bibcode:2018CBio...28E2081S. doi:10.1016/j.cub.2018.05.004. PMID 29910073.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. ^ Kuijpers M, van de Willige D, Freal A, Chazeau A, Franker MA, Hofenk J; et al. (2016). "Dynein Regulator NDEL1 Controls Polarized Cargo Transport at the Axon Initial Segment". Neuron. 89 (3): 461–71. doi:10.1016/j.neuron.2016.01.022. PMID 26844830.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. ^ Franker MA, Esteves da Silva M, Tas RP, Tortosa E, Cao Y, Frias CP; et al. (2016). "Three-Step Model for Polarized Sorting of KIF17 into Dendrites". Curr Biol. 26 (13): 1705–1712. Bibcode:2016CBio...26.1705F. doi:10.1016/j.cub.2016.04.057. PMID 27265394.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  14. ^ Tortosa E, Adolfs Y, Fukata M, Pasterkamp RJ, Kapitein LC, Hoogenraad CC (2017). "Dynamic Palmitoylation Targets MAP6 to the Axon to Promote Microtubule Stabilization during Neuronal Polarization". Neuron. 94 (4): 809–825.e7. doi:10.1016/j.neuron.2017.04.042. PMID 28521134.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  15. ^ Farías GG, Fréal A, Tortosa E, Stucchi R, Pan X, Portegies S; et al. (2019). "Feedback-Driven Mechanisms between Microtubules and the Endoplasmic Reticulum Instruct Neuronal Polarity". Neuron. 102 (1): 184–201.e8. doi:10.1016/j.neuron.2019.01.030. PMID 30772082.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. ^ van Spronsen M, Mikhaylova M, Lipka J, Schlager MA, van den Heuvel DJ, Kuijpers M; et al. (2013). "TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites". Neuron. 77 (3): 485–502. doi:10.1016/j.neuron.2012.11.027. PMID 23395375.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  17. ^ Lipka J, Kapitein LC, Jaworski J, Hoogenraad CC (2016). "Microtubule-binding protein doublecortin-like kinase 1 (DCLK1) guides kinesin-3-mediated cargo transport to dendrites". EMBO J. 35 (3): 302–18. doi:10.15252/embj.201592929. PMC 4741305. PMID 26758546.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  18. ^ Gumy LF, Katrukha EA, Grigoriev I, Jaarsma D, Kapitein LC, Akhmanova A; et al. (2017). "MAP2 Defines a Pre-axonal Filtering Zone to Regulate KIF1- versus KIF5-Dependent Cargo Transport in Sensory Neurons". Neuron. 94 (2): 347–362.e7. doi:10.1016/j.neuron.2017.03.046. PMID 28426968.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  19. ^ Pan X, Cao Y, Stucchi R, Hooikaas PJ, Portegies S, Will L; et al. (2019). "MAP7D2 Localizes to the Proximal Axon and Locally Promotes Kinesin-1-Mediated Cargo Transport into the Axon". Cell Rep. 26 (8): 1988–1999.e6. doi:10.1016/j.celrep.2019.01.084. PMC 6381606. PMID 30784582.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  20. ^ Zahavi EE, Hummel JJA, Han Y, Bar C, Stucchi R, Altelaar M; et al. (2021). "Combined kinesin-1 and kinesin-3 activity drives axonal trafficking of TrkB receptors in Rab6 carriers". Dev Cell. 56 (4): 494–508.e7. doi:10.1016/j.devcel.2021.01.010. PMC 7907685. PMID 33571451.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  21. ^ van Beuningen SFB, Will L, Harterink M, Chazeau A, van Battum EY, Frias CP; et al. (2015). "TRIM46 Controls Neuronal Polarity and Axon Specification by Driving the Formation of Parallel Microtubule Arrays". Neuron. 88 (6): 1208–1226. doi:10.1016/j.neuron.2015.11.012. PMID 26671463.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  22. ^ Fréal A, Fassier C, Le Bras B, Bullier E, De Gois S, Hazan J; et al. (2016). "Cooperative Interactions between 480 kDa Ankyrin-G and EB Proteins Assemble the Axon Initial Segment". J Neurosci. 36 (16): 4421–33. doi:10.1523/JNEUROSCI.3219-15.2016. PMC 6601828. PMID 27098687.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  23. ^ Janssen AFJ, Tas RP, van Bergeijk P, Oost R, Hoogenraad CC, Kapitein LC (2017). "Myosin-V Induces Cargo Immobilization and Clustering at the Axon Initial Segment". Front Cell Neurosci. 11: 260. doi:10.3389/fncel.2017.00260. PMC 5581344. PMID 28894417.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  24. ^ Fréal A, Rai D, Tas RP, Pan X, Katrukha EA, van de Willige D; et al. (2019). "Feedback-Driven Assembly of the Axon Initial Segment". Neuron. 104 (2): 305–321.e8. doi:10.1016/j.neuron.2019.07.029. PMC 6839619. PMID 31474508.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  25. ^ Özkan N, Koppers M, van Soest I, van Harten A, Jurriens D, Liv N; et al. (2021). "ER - lysosome contacts at a pre-axonal region regulate axonal lysosome availability". Nature Communications. 12 (1): 4493. Bibcode:2021NatCo..12.4493O. doi:10.1038/s41467-021-24713-5. PMC 8302662. PMID 34301956.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  26. ^ Stiess M, Maghelli N, Kapitein LC, Gomis-Rüth S, Wilsch-Bräuninger M, Hoogenraad CC; et al. (2010). "Axon extension occurs independently of centrosomal microtubule nucleation". Science. 327 (5966): 704–7. Bibcode:2010Sci...327..704S. doi:10.1126/science.1182179. PMID 20056854.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  27. ^ Kapitein LC, Hoogenraad CC (2015) Building the Neuronal Microtubule Cytoskeleton. Neuron 87 (3):492-506. DOI:10.1016/j.neuron.2015.05.046 PMID 26247859
  28. ^ Harterink M, da Silva ME, Will L, Turan J, Ibrahim A, Lang AE; et al. (2017). "DeActs: genetically encoded tools for perturbing the actin cytoskeleton in single cells". Nat Methods. 14 (5): 479–482. doi:10.1038/nmeth.4257. PMC 5419720. PMID 28394337.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  29. ^ Lindhout FW, Portegies S, Kooistra R, Herstel LJ, Stucchi R, Hummel JJA; et al. (2021). "Centrosome-mediated microtubule remodeling during axon formation in human iPSC-derived neurons". EMBO J. 40 (10): e106798. doi:10.15252/embj.2020106798. PMC 8126955. PMID 33835529.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  30. ^ Akhmanova A, Hoogenraad CC, Drabek K, Stepanova T, Dortland B, Verkerk T; et al. (2001). "Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts". Cell. 104 (6): 923–35. doi:10.1016/s0092-8674(01)00288-4. PMID 11290329.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  31. ^ Stepanova T, Slemmer J, Hoogenraad CC, Lansbergen G, Dortland B, De Zeeuw CI; et al. (2003). "Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (end-binding protein 3-green fluorescent protein)". J Neurosci. 23 (7): 2655–64. doi:10.1523/JNEUROSCI.23-07-02655.2003. PMC 6742099. PMID 12684451.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  32. ^ Yau KW, van Beuningen SF, Cunha-Ferreira I, Cloin BM, van Battum EY, Will L; et al. (2014). "Microtubule minus-end binding protein CAMSAP2 controls axon specification and dendrite development". Neuron. 82 (5): 1058–73. doi:10.1016/j.neuron.2014.04.019. PMID 24908486.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  33. ^ Yau KW, Schätzle P, Tortosa E, Pagès S, Holtmaat A, Kapitein LC; et al. (2016). "Dendrites In Vitro and In Vivo Contain Microtubules of Opposite Polarity and Axon Formation Correlates with Uniform Plus-End-Out Microtubule Orientation". J Neurosci. 36 (4): 1071–85. doi:10.1523/JNEUROSCI.2430-15.2016. PMC 4728718. PMID 26818498.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  34. ^ Cunha-Ferreira I, Chazeau A, Buijs RR, Stucchi R, Will L, Pan X; et al. (2018). "The HAUS Complex Is a Key Regulator of Non-centrosomal Microtubule Organization during Neuronal Development". Cell Rep. 24 (4): 791–800. doi:10.1016/j.celrep.2018.06.093. PMC 6083040. PMID 30044976.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  35. ^ Hoogenraad CC, Akhmanova A, Howell SA, Dortland BR, De Zeeuw CI, Willemsen R; et al. (2001). "Mammalian Golgi-associated Bicaudal-D2 functions in the dynein-dynactin pathway by interacting with these complexes". EMBO J. 20 (15): 4041–54. doi:10.1093/emboj/20.15.4041. PMC 149157. PMID 11483508.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  36. ^ Matanis T, Akhmanova A, Wulf P, Del Nery E, Weide T, Stepanova T; et al. (2002). "Bicaudal-D regulates COPI-independent Golgi-ER transport by recruiting the dynein-dynactin motor complex". Nat Cell Biol. 4 (12): 986–92. doi:10.1038/ncb891. PMID 12447383. S2CID 7953140.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  37. ^ van Bergeijk P, Adrian M, Hoogenraad CC, Kapitein LC (2015). "Optogenetic control of organelle transport and positioning". Nature. 518 (7537): 111–114. Bibcode:2015Natur.518..111V. doi:10.1038/nature14128. PMC 5063096. PMID 25561173.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  38. ^ Kevenaar JT, Bianchi S, van Spronsen M, Olieric N, Lipka J, Frias CP; et al. (2016). "Kinesin-Binding Protein Controls Microtubule Dynamics and Cargo Trafficking by Regulating Kinesin Motor Activity". Curr Biol. 26 (7): 849–61. Bibcode:2016CBio...26..849K. doi:10.1016/j.cub.2016.01.048. PMID 26948876.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  39. ^ Hummel JJA, Hoogenraad CC (2021). "Inducible manipulation of motor-cargo interaction using engineered kinesin motors". J Cell Sci. 134 (15). doi:10.1242/jcs.258776. PMC 8353518. PMID 34342354.
  40. ^ Erez H, Malkinson G, Prager-Khoutorsky M, De Zeeuw CI, Hoogenraad CC, Spira ME (2007). "Formation of microtubule-based traps controls the sorting and concentration of vesicles to restricted sites of regenerating neurons after axotomy". J Cell Biol. 176 (4): 497–507. doi:10.1083/jcb.200607098. PMC 2063984. PMID 17283182.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  41. ^ Hellal F, Hurtado A, Ruschel J, Flynn KC, Laskowski CJ, Umlauf M; et al. (2011). "Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury". Science. 331 (6019): 928–31. Bibcode:2011Sci...331..928H. doi:10.1126/science.1201148. PMC 3330754. PMID 21273450.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  42. ^ Teuling E, Ahmed S, Haasdijk E, Demmers J, Steinmetz MO, Akhmanova A; et al. (2007). "Motor neuron disease-associated mutant vesicle-associated membrane protein-associated protein (VAP) B recruits wild-type VAPs into endoplasmic reticulum-derived tubular aggregates". J Neurosci. 27 (36): 9801–15. doi:10.1523/JNEUROSCI.2661-07.2007. PMC 6672975. PMID 17804640.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  43. ^ Kuijpers M, Yu KL, Teuling E, Akhmanova A, Jaarsma D, Hoogenraad CC (2013). "The ALS8 protein VAPB interacts with the ER-Golgi recycling protein YIF1A and regulates membrane delivery into dendrites". EMBO J. 32 (14): 2056–72. doi:10.1038/emboj.2013.131. PMC 3715857. PMID 23736259.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  44. ^ Tortosa E, Sengupta Ghosh A, Li Q, Wong WR, Hinkle T, Sandoval W; et al. (2022). "Stress-induced vesicular assemblies of dual leucine zipper kinase are signaling hubs involved in kinase activation and neurodegeneration". EMBO J. 41 (14): e110155. doi:10.15252/embj.2021110155. PMC 9289706. PMID 35611591.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  45. ^ Adrian M, Weber M, Tsai MC, Glock C, Kahn OI, Phu L; et al. (2023). "Polarized microtubule remodeling transforms the morphology of reactive microglia and drives cytokine release". Nat Commun. 14 (1): 6322. Bibcode:2023NatCo..14.6322A. doi:10.1038/s41467-023-41891-6. PMC 10562429. PMID 37813836.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  46. ^ "Casper Hoogenraad Pubmed".
  47. ^ "Casper Hoogenraad Google Scholar profile".
  48. ^ "Casper Hoogenraad ORCID profile".
  49. ^ "ASCB profile". ASCB Press - Mary Spiro. 8 July 2020.
  50. ^ "Genentech lab". Genentech, member of the Roche group.
  51. ^ "EMBO member". EMBO Press. Archived from the original on 2015-12-01.
  52. ^ "Casper Hoogenraad - DJA-KNAW". Retrieved 2020-08-02.
  53. ^ "Casper Hoogenraad - YAE". 18 December 2016. Retrieved 2020-08-02.
  54. ^ "Editorial Board: Neuron". Cell Press.
  55. ^ "Editorial Board: The EMBO Journal". EMBO Press.
  56. ^ "IBRO Kemali Prize". IBRO, IBRO, the International Brain Research Organization. Archived from the original on 2015-09-05.
  57. ^ A Day in the Life of a Motor Protein (Youtube). REDRUM, Ede, The Netherlands.