Jump to content

Renewable energy in Australia

From Wikipedia, the free encyclopedia

White Cliffs Solar Power Station, Australia's first solar power station operated between 1981 and 2004

Renewable energy in Australia is mainly based on biomass, solar, wind, and hydro generation. Over a third of electricity is generated from renewables, and is increasing, with a target to phase out coal power before 2040.[1] Wind energy and rooftop solar have particularly grown since 2010. The growth has been stimulated by government energy policy in order to limit the rate of climate change in Australia that has been brought about by the use of fossil fuels. Pros and cons of various types of renewable energy are being investigated, and more recently there have been trials of green hydrogen and wave power.

Australia ratified the Kyoto protocol in 2007, and in 2016 became a party to the Paris Agreement, an international agreement which binds member countries to address climate change. However, the level of fossil fuel subsidies in Australia is still disputed. The Australian Renewable Energy Agency (ARENA) was established as an independent government agency in 2012 to improve the competitiveness of renewable energy technologies and to encourage innovation in the industry. As of 2024 renewable energy is seen as a good investment,[2] and many companies operate in Australia, including BP Solar, Eurosolar, Hydro Tasmania, Origin Energy, and Pacific Blue.

Australia renewable electricity production by source
Australian renewable electricity generation (gigawatt-hours), 2022[3]
Source Generation (GWh)
Wind
29,892
Small solar
21,726
Hydro
16,537
Large solar
11,740
Bioenergy
3,181
Medium solar
980

Government policy

[edit]

As in many other countries, renewable energy in Australia has been encouraged by government energy policy to limit climate change, reduce oil import dependency,[4] and stimulate the economy.[5][6][7][need quotation to verify]

A 2019 article raised concerns about environmental sustainability for future generations, as it seemed that the then federal government had no renewable energy policy beyond the year 2020.[8] The Liberal Party's energy minister, Angus Taylor, stated that the government would not be replacing the Renewable Energy Target (RET) after 2020.[8]

International agreements

[edit]

Australia ratified the Kyoto Protocol in December 2007 under the then newly elected Prime Minister Kevin Rudd. Evidence suggests Australia will meet its targets required under this protocol. Australia had not ratified the Kyoto Protocol until then, due to concerns over a loss of competitiveness with the US, which also rejects the treaty.[9]

In December 2016, Australia became a party to the Paris Agreement, an international agreement which binds member countries to address climate change, and started submitting emissions reduction commitments (NDCs).[10]

Renewable energy targets

[edit]

A key policy encouraging the development of renewable energy in Australia are the mandatory renewable energy targets (MRET) set by both Commonwealth and state governments. [citation needed]

An Expanded Renewable Energy Target was passed with broad support[11] by the Australian Parliament on 20 August 2009, to ensure that renewable energy achieves a 20% share of electricity supply in Australia by 2020. To ensure this the Federal Government committed to increasing the 2020 MRET from 9,500 gigawatt-hours to 45,000 gigawatt-hours. The scheme was scheduled to continue until 2030.[12] This target has since been revised with the Gillard government introducing in January 2011 an expanded target of 45,000 GWh of additional renewable energy between 2001 and 2020.[13]

The MRET was split in 2012 into a small-scale renewable energy scheme (SRES) and large-scale renewable energy target (LRET) components to ensure that adequate incentive exists for large scale grid connected renewable energy.[14] A number of states have also implemented their own renewable energy targets independent of the Commonwealth. For example, the Victorian Renewable Energy Target Scheme (VRET) mandated an additional 5% of Victoria's "load for renewable generation", although this has since been replaced by the new Australian Government LRET and SRES targets.[14] South Australia achieved its target of 20% of renewable supply by 2014 three years ahead of schedule (i.e. in 2011) and has subsequently established a new target of 33% to be achieved by 2020.[15]

Australia's climate goal includes reducing emissions by 43% by 2030, aiming for 82% of its electricity to come from renewable sources, aligning with the Australian Energy Market Operator's (AEMO) forecast of 83% renewables in the National Electricity Market by the same year. This effort is supported by individual targets and initiatives from states and territories, and the National Energy Transformation Partnership, established in August 2022.[16][17]

Government bodies and mechanisms

[edit]

Australian Renewable Energy Agency (ARENA)

[edit]

ARENA was established by the Australian Government on 1 July 2012. The purpose of ARENA is to improve the competitiveness of renewable energy technologies and increase the supply of renewable energy through innovation that benefits Australian consumers and businesses. Between 2012 and January 2021, ARENA supported 566 projects with $1.63 billion in grant funding.[18]

Carbon pricing

[edit]

In 2012, the Gillard government implemented a carbon price of A$23 per tonne to be paid by 300 liable entities representing the highest business emitters in Australia. The carbon price will increase to $25.40 per tonne by 2014–15, and then will be set by the market from 1 July 2015 onwards.[19] It was expected that in addition to encouraging efficient use of electricity, pricing carbon will encourage investment in cleaner renewable energy sources such as solar and wind power. Treasury modelling has projected that with a carbon price, energy from the renewables sector is likely to reach 40 per cent of supply by 2050.[20] Analysis of the first 6 months of operation of the carbon tax showed that there had been a drop in carbon emissions by the electricity sector. There had been a change in the mix of energy over this period, with less electricity being sourced from coal and more being produced by renewables such as hydro and wind power.[21] The government at the time presented this analysis as an indicator that their policies to promote cleaner energy were working.[21]

The carbon pricing legislation was repealed by the Tony Abbott-led Australian Government on 17 July 2014.[22] Since then, carbon emissions from the electricity sector have increased.[23]

Clean Energy Finance Corporation (CEFC)

[edit]

The new 10 billion dollar Clean Energy Finance Corporation (CEFC) was created by the government in 2012, with the goal of overcoming barriers to the mobilisation of capital by the renewable energy sector. It was intended to make available two billion dollars a year for five years for the financing of renewable energy, energy efficiency, and low emissions technologies projects in the latter stages of development. The fund was expected to be financially self-sufficient.[24][25]

By the end of 2022, the CEFC had investments totalling around A$11 billion, and had financed 42 wind and solar projects, which added 2.1 GW of solar and 1.5 GW of wind capacity. In 2022, as part of the "Rewiring the Nation" initiative, the Australian Government approved a capital increase of A$11 billion for the CEFC, its first since the corporation's inception. As of 2022, the CEFC had facilitated over A$38.65 billion in clean energy investments.[17]

Renewable Energy Certificates Registry

[edit]

The Renewable Energy Certificates Registry (REC-registry) is an internet-based registry system that is required by the Australian Renewable Energy (Electricity) Act 2000.[26] The REC-registry is dedicated to: maintaining various registers (as set in the act); and facilitating the creation, registration, transfer and surrender of renewable energy certificates (RECs).[citation needed]

Feed-in tariffs

[edit]

Feed-in tariffs have been enacted on a state-by-state basis in Australia to encourage investment in renewable energy by providing above commercial rates for electricity generated from sources such as rooftop photovoltaic panels or wind turbines.[5] The schemes in place focus on residential scale infrastructure by having limits that effectively exclude larger-scale developments such as wind farms. Feed-in tariffs schemes in Australia started at a premium, but have mechanisms by which the price paid for electricity decreases over time to be equivalent or below the commercial rate.[5] As of 2011, all the schemes in place in Australia were "net" schemes, whereby the householder is only paid for surplus electricity over and above what is actually used. In the past, New South Wales and the Australian Capital Territory enacted "gross" schemes whereby householders were entitled to be paid for 100% of renewable electricity generated on the premises, however these programs have now expired. In 2008 the Council of Australian Governments (COAG) agreed to harmonise the various state schemes and developed a set of national principles to apply to new schemes.[27] Leader of the Australian Greens, Christine Milne, advocated a uniform national "gross" feed-in tariff scheme.[28] Each state and territory of Australia offers a different policy with regards to feed-in tariffs.[29]

Solar Sunshot program

[edit]

The Solar Sunshot program, announced by prime minister Anthony Albanese in March 2024, is a A$1 billion fund that delivers grants and production credits to manufacturers of solar panels, to increase the number made in Australia. (As of March 2024, 99% are imported.) The scheme will be run by ARENA. Provision will also be made to manufacturers of other components needed to create renewable energy, and the scheme is part of a plan to provide jobs for those workers currently employed in the coal industry. The new industries will be created in Portland and the Latrobe Valley in Victoria, and Wollongong and the Hunter Region in NSW.[30]

Subsidies to fossil fuel industry

[edit]

There is dispute about the level of subsidies paid to the fossil fuel industry in Australia. The Australian Conservation Foundation (ACF) argues that according to the definitions of the Organisation for Economic Co-operation and Development (OECD), fossil fuel production and use is subsidised in Australia by means of direct payments, favourable tax treatment, and other actions. It has been suggested these measures act as impediments to investment in renewable energy resources.[31] Analysis by the ACF in 2010 indicated that these provisions added up to a total annual subsidy of A$7.7 billion, with the most significant component being the Fuel Tax Credits program that rebates diesel fuel excise to many business users.[32] This analysis is disputed by the Institute of Public Affairs (IPA) who argue that the ACF's definition of a subsidy differs from that of the OECD and that the fuel tax rebate schemes are in place to ensure that all producers are treated equally from a tax point of view. However, the IPA acknowledges that regardless of perceived issues with the ACF analysis, some level of fossil fuel subsidy is likely in existence.[33]

State and territory policies

[edit]

State governments have varied in their policies.

  • In Victoria, the renewable energy targets were set to achieve 25% by 2020, 40% by 2025, and 50% by 2030. A subsequent announcement in 2022 outlined ambitious goals of 65% by 2030 and 95% by 2035. These targets are part of the state's Climate Change Strategy, which employs reverse auctions to finance more than 900 MW of renewable energy projects.[17]
  • The Australian Capital Territory (ACT) made significant strides in renewable energy, achieving 100% renewables in 2020—a target set in 2016 under its Climate Change Strategy 2019-2025. This achievement was facilitated by reverse auctions that funded renewable energy generation projects, cumulatively amounting to 650 MW.[17]
  • Queensland has set renewable energy targets of 70% by 2032 and 80% by 2035, announced in September 2022. These objectives are embedded within Queensland's Climate Action Plan 2020-2030, which also foresees the conversion of coal-fired power plants into renewable energy hubs by 2035. To facilitate this transition, an AUD 62 billion clean energy plan has been put in place, utilising reverse auctions.[17]
  • South Australia is committed to achieving 100% net renewables by 2030 and aspires to be a net exporter of renewable energy, setting a bold target of 500% by 2050. These ambitions are detailed in the Climate Change Action Plan 2021-2025, which focuses on government funding for renewable energy and storage solutions, rather than market mechanisms.[17]
  • Tasmania is on track to achieve its target of 100% renewable energy by 2022,[34] a goal it achieved ahead of schedule in 2020. The state now targets the production of 200% renewable energy by 2040. This goal is advanced by the Climate Change Action Plan 2017-2021, focusing on enhancing government investment in existing hydropower assets, avoiding reliance on market mechanisms.[17]
  • The Northern Territory has committed to a target of 50% renewable energy by 2030.[35] The state is also set to have 10% renewable energy by 2020.[36]
  • New South Wales aims to have zero emissions across the state economy by 2050.[37]
  • As of 2018, Western Australia was the only state or territory yet to commit to a renewable energy target.[38] In May 2019, 21 Western Australian councils have called on the state's Labor government to adopt targets for a 50% renewable electricity supply by 2030, and net-zero emissions by 2050.[39]

Timeline of developments

[edit]

2001–2010

[edit]

In 2001, a mandatory renewable energy target is introduced to encourage large-scale renewable energy development.[citation needed]

In 2007, several reports have discussed the possibility of Australia setting a renewable energy target of 25% by 2020.[40][41] Combined with some basic energy efficiency measures, such a target could deliver 15,000 MW new renewable power capacity, $33 billion in new investment, 16,600 new jobs, and 69 million tonnes reduction in electricity sector greenhouse gas emissions.[41]

In 2008, Greenpeace released a report called "Energy [r]evolution: A Sustainable Energy Australia Outlook", detailing how Australia could produce 40% of its energy through renewable energy by 2020 and completely phase out coal-fired power by 2030 without any job losses.[42] David Spratt and Phillip Sutton argue in their book Climate Code Red that Australia needs to reduce its greenhouse gas emissions down to zero as quickly as possible so that carbon dioxide can be drawn down from the atmosphere and greenhouse gas emissions can be reduced to less than 325 ppm CO2-e, which they argue is the upper "safe climate" level at which we can continue developing infinitely. They outline a plan of action which would accomplish this.[43]

In 2010 the mandatory renewable energy target was increased to 41,000 gigawatt-hours of renewable generation from power stations. This was subsequently reduced to 33,000 gigawatt-hours by the Abbott government, in a compromise agreed to by the Labor opposition.[44] Alongside this there is the Small-Scale Renewable Energy Scheme, an uncapped scheme to support rooftop solar power and solar hot water[45] and several State schemes providing feed-in tariffs to encourage photovoltaics.

Also in 2010, ZCA[who?] launch their "Stationary Energy Plan"[46] showing Australia could entirely transition to renewable energy within a decade by building 12 very large scale solar power plants (3500 MW each), which would provide 60% of electricity used, and 6500 7.5 MW wind turbines, which would supply most of the remaining 40%, along with other changes. The transition would cost A$370 billion or about $8/household/week over a decade to create a renewable energy infrastructure that would last a minimum of 30 to 40 years.[47]

2011–2020

[edit]

In 2012, these policies were supplemented by a carbon price and a 10 billion-dollar fund to finance renewable energy projects,[24] although these initiatives were later withdrawn by the Abbott government.[48]

Of all renewable electrical sources in 2012, hydroelectricity represented 57.8%, wind 26%, bioenergy 8.1%, solar PV 8%, large-scale solar 0.147%, geothermal 0.002% and marine 0.001%; additionally, solar hot water heating was estimated to replace a further 2,422 GWh of electrical generation.[49]

In 2015, the Abbott government ordered the $10 billion Clean Energy Finance Corporation to refrain from any new investment in wind power projects, saying that the government prefers the corporation to invest in researching new technologies rather than the "mature" wind turbine sector.[50]

In December 2016, Australia became a party to the Paris Agreement, an international agreement which binds member countries to address climate change. It is an obligation for each to submit emissions reduction commitments, called Nationally Determined Contributions (NDCs),[10] under Article 4 of the agreement. Australia submitted an NDC in 2022.[51]

By 2017, an unprecedented 39 projects, both solar and wind, with a combined capacity of 3,895 MW, were either under construction, already constructed, or would start construction in 2017. Capacity addition based on renewable energy sources was expected to increase substantially in 2017, with over 49 projects either under construction, constructed or with funding secured for construction.[52] As of August 2017, it was estimated that Australia generated enough to power 70% of the country's households, and once additional wind and solar projects were complete at the end of the year, enough energy would be generated to power 90% of the country's homes.[53]

In 2019, Australia met its 2020 renewable energy target of 23.5% and 33 terawatt-hours (TWh).[54]


With the 2020 targets being achieved, many of the Australian states and territories committed to a greater 40% target for renewable energy sources by 2030, including Queensland, Victoria and the Northern Territory.[55]

2021–present

[edit]

Between 2000 and 2021, the proportion of energy from renewables grew from 8% to 11.5%, mainly due to growth of wind energy and rooftop solar since 2010.[17]: 79 

In July 2022, a report published by the Australian Academy of Technological Sciences and Engineering estimated that Australia would be generating around 50 per cent its electricity needs from renewable sources by 2025, rising to 69 per cent by 2030. By 2050, power networks would be able to use 100 per cent green energy for periods. However the report said that investment was also needed, not only in new renewable sources, but in services needed during the transition period – hydroelectric power, batteries and probably gas for a while.[56]

In 2022, 35.9% of electricity in Australia was generated from renewable sources, up from 32.5 in 2021.[3]

By type

[edit]

Despite the increase in renewables most energy is still from fossil fuels.

Energy consumption by source

Albany Wind Farm, WA
Renewable fuel type 2016–17 (PJ)[57] 2020–21 (PJ)[58] Change (%) Share of renewables 2020–21 (%)
Biomass 205.4 171.2 −16.7 37.0
Municipal and Industrial waste 2.6 4.6 76.9 1.0
Biogas 15.0 18.0 20.0 3.9
Biofuels 7.1 6.2 −12.7 1.3
Hydro 58.6 54.7 −6.7 11.8
Wind 45.3 88.3 94.9 19.1
Solar PV 29.1 99.8 243.0 21.6
Solar hot water 15.7 19.7 25.5 4.3
Total 378.7 462.4 22.1 100.0

Biofuels

[edit]

Biomass can be used directly for electricity generation, for example by burning sugarcane waste (bagasse) as a fuel for thermal power generation in sugar mills. It can also be used to produce steam for industrial uses, cooking, and heating. It can also be converted into a liquid or gaseous biofuel.[59] In 2015 Bagasse accounted for 26.1% (90.2PJ) of Australia's renewable energy consumption, while wood and wood waste for another 26.9% (92.9PJ).[60] Biomass for energy production was the subject of a federal government report in 2004.[61]

Biofuels produced from food crops have become controversial as food prices increased significantly in mid-2008, leading to increased concerns about food vs fuel. Ethanol fuel in Australia can be produced from sugarcane or grains and there are currently three commercial producers of fuel ethanol in Australia, all on the east coast. Legislation imposes a 10% cap on the concentration of fuel ethanol blends. Blends of 90% unleaded petrol and 10% fuel ethanol are commonly referred to as E10,[62] which is mainly available through service stations operating under the BP, Caltex, Shell, and United brands. In partnership with the Queensland Government, the Canegrowers organisation launched a regional billboard campaign in March 2007 to promote the renewable fuels industry. Over 100 million litres of the new BP Unleaded with renewable ethanol has now been sold to Queensland motorists.[62] Biodiesel produced from oilseed crops or recycled cooking oil may be a better prospect than ethanol, given the nation's heavy reliance on road transport, and the growing popularity of fuel-efficient diesel cars.[63] Australian cities are some of the most car-dependent cities in the world,[64] and legislations involving vehicle pollution within the country are considered relatively lax.[65]

Australian bioenergy electricity generation by year[66][67][68][69][70][71][72][73][74][3]
Year 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Generation (GWh) 2400 2400 3200 3608 3713 3412 3314 3164 3187 3181
% of Renewable Electricity 6.9 7.6 9.1 8.6 9.7 7.1 6.0 5.0 4.3 3.8
% of Total Electricity 1.02 1.02 1.34 1.49 1.65 1.5 1.4 1.4 1.4 1.4

Geothermal energy

[edit]

In Australia, geothermal energy is a natural resource which is not widely used as a form of energy. However, there are known and potential locations near the centre of the country in which geothermal activity is detectable. Exploratory geothermal wells have been drilled to test for the presence of high temperature geothermal activity and such high levels were detected. As a result, projects will eventuate in the coming years and more exploration is expected at potential locations.

South Australia has been described as "Australia's hot rock haven" and this emissions free and renewable energy form could provide an estimated 6.8% of Australia's base load power needs by 2030.[75] According to an estimate by the Centre for International Economics, Australia has enough geothermal energy to contribute electricity for 450 years.[76]

There are currently 19 companies Australia-wide spending A$654 million in exploration programmes in 141 areas. In South Australia, which is expected to dominate the sector's growth, 12 companies have already applied for 116 areas and can be expected to invest A$524 million (US$435 M) in their projects by the next six years. Ten projects are expected to achieve successful exploration and heat flows, by 2010, with at least three power generation demonstration projects coming on stream by 2012.[75] A geothermal power plant is generating 80 kW of electricity at Birdsville, in southwest Queensland.[77]

Green hydrogen

[edit]

Investigations into green hydrogen production has been funded by the Australian Renewable Energy Agency (ARENA), an independent federal government agency, mostly in Western Australia. In 2018, it funded Australia's first green hydrogen project at Jandakot, called the ATCO Hydrogen Microgrid. Solar energy is used to separate hydrogen molecules from water to create renewable hydrogen. This project involved a trial to produce, store, and use green hydrogen to power a microgrid, and to assess the feasibility of a similar process on a larger scale.[78] The total project cost was A$3.53m, with A$1.79m coming from ARENA, and the project was completed on 30 November 2019.[79]

In South Australia, the Whyalla Hydrogen Facility is a proposed 250MWe hydrogen electrolyser, a 200MW combined cycle gas turbine generator, and 3600-tonne hydrogen storage facility.[80][81] A South Australian Government company called Hydrogen Power South Australia was established to own and operate the plant, which is expected to be completed in 2025 and begin operations in 2026.[80] Once it is up and running, it will supply power to the Whyalla Steelworks, which will then produce green steel.[82]

In March 2024 funding was provided by ARENA for a feasibility study into the East Kimberley Clean Energy Project, in which a 900-megawatt solar farm at Lake Argyle, Western Australia, would create green hydrogen gas. This would be piped north to Wyndham, where it would be converted into ammonia and exported to Asia. Total output is estimated at 250,000 tonnes per annum.[83][84]

Hydro power

[edit]
Tumut 3, the largest hydropower station in Australia with 1,800 MW. Part of the Snowy Mountains Scheme.

In 2022, hydro power supplied 19.7% of Australia's renewable electricity generation or 7.1% of Australia's total electricity generation.[3]

The largest hydro power system in Australia is the Snowy Mountains Scheme constructed between 1949 and 1974, which consists of 16 major dams and 7 major power stations, and has a total generating capacity of 3,800 MW. The scheme generates on average 4,500 GWh electricity per year.[85] A major extension of the scheme is ongoing as of 2020. Dubbed Snowy 2.0, it consists in adding a 2,000 MW pumped hydro storage capacity by connecting two existing reservoirs with tunnels and an underground power station. It is due to complete by 2026.[86]

Hydro Tasmania operates 30 power stations and 15 dams, with a total generating capacity of 2,600 MW, and generates an average of 9,000 GWh of electricity per year.[87] There are also plans to upgrade Tasmania's hydro power system to give it the capability to function as pumped hydro storage under the 'Battery of the Nation' initiative.[68]

Australian hydroelectricity generation by year[66][67][68][69][70][71][72][73][74][3]
Year 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Generation (GWh) 19243 14555 14046 17747 12920 17002 14166 14638 16128 16537
% of Renewable Electricity 55.4 45.9 40.1 42.3 33.9 35.2 25.7 23.3 21.6 19.7
% of Total Electricity 8.2 6.2 5.9 7.3 5.7 7.5 6.2 6.4 7.0 7.1

Solar photovoltaics

[edit]

In 2022, solar power supplied around 41.0% of Australia's renewable electricity and around 14.7% of Australia's total electricity.[3] Twelve new large-scale (>5 MW) solar farms were commissioned in 2021 with a combined capacity of 840 MW, bringing the total installed large-scale capacity to almost 6.5 GW. As of the end of 2022, 48 large-scale solar farms were either under construction or financial committed nationally.[3]

Small-scale solar power (<100 kW) is the dominant contributor to Australia's overall solar electricity production as of 2022, producing 63% of solar's total electricity output (21,726 GWh of 34,446 GWh total).[3] In 2022, 2.7 GW of new small-scale capacity was installed across 310,352 installations, bringing total small-scale capacity to 19.39 GW.[3]

As of December 2022, Australia's over 3.36 million solar PV installations had a combined capacity of 29,683 MW of which 3,922 MW were installed in the preceding 12 months.[88]

Top 5 operational large-scale solar farms by capacity (MW)[3]
Rank Name Capacity (MW) Commissioned
1 Darlington Point Solar Farm 275 2021
2 Limondale Solar Farm 220 2021
3 Kiamal solar farm 200 2021
4 Sunraysia Solar Farm 200 2021
5 Wellington Solar Farm 174 2021
Australian solar PV electricity generation by year[66][67][68][69][70][71][72][73][74][3]
Year 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Generation (GWh) 3820 4952 5931 7659 8615 11694 18126 22510 28561 34446
% of Renewable Electricity 11.0 15.6 16.9 18.3 22.6 24.2 32.9 35.8 38.3 41.0
% of Total Electricity 1.6 2.1 2.5 3.2 3.8 5.2 7.8 9.9 12.4 14.7

Solar thermal energy

[edit]

Solar water heating

[edit]

Australia has developed world leading solar thermal technologies, but with only very low levels of actual use. Domestic solar water heating is the most common solar thermal technology.[89] During the 1950s, Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) carried out world leading research into flat plate solar water heaters. A solar water heater manufacturing industry was subsequently established in Australia and a large proportion of the manufactured product was exported. Four of the original companies are still in business and the manufacturing base has now expanded to 24 companies. Despite an excellent solar resource, the penetration of solar water heaters in the Australian domestic market was only about 5% in 2006, with new dwellings accounting for most sales.[90] By 2014, around 14% of Australian households had solar hot water installed[91] It is estimated that by installing a solar hot water system, it could reduce a family's CO2 emissions up to 3 tonnes per year while saving up to 80% of the energy costs for water heating.[92]

While solar water heating saves a significant amount of energy, they are generally omitted from measures of renewable energy production as they do not actually produce electricity. Based on the installed base in Australia as of October 2010, it was calculated that solar hot water units would account for about 7.4% of clean energy production if they were included in the overall figures.[93]

Solar thermal power

[edit]

The CSIRO's National Solar Energy Centre in Newcastle, New South Wales houses a 500 kW (thermal) and a 1.5 MW (thermal) solar central receiver system, which are used as research and development facilities.[94][95]

The Australian National University (ANU) has worked on dish concentrator systems since the early 1970s, and early work lead to the construction of the White Cliffs Solar Power Station. In 1994, the first 'Big Dish' 400 m2 solar concentrator was completed on the ANU campus. In 2005, the dish technology developed by ANU was exclusively licensed to solar technology company Wizard Power.[96][97] In collaboration with ANU, the company built and demonstrated the 500m2 commercial Big Dish design in Canberra, with this having been completed in 2009. The company had planned to construct the Solar Oasis demonstration site in Whyalla, South Australia as the first commercial implementation of the technology,[98] using 300 Wizard Power Big Dish solar thermal concentrators to deliver a 40MWe solar thermal power plant.[99] Construction was expected to commence in mid-late 2013, but following the withdrawal of Commonwealth funding in June 2013, the project was halted with Wizard Power ceasing operations in September 2013.[100]

Research activities at the University of Sydney and University of New South Wales have spun off into Solar Heat and Power (now Areva Solar), which was building a major project at Liddell Power Station in the Hunter Valley. The CSIRO Division of Energy Technology has opened a major solar energy centre in Newcastle that has a tower system purchased from Solar Heat and Power and a prototype trough concentrator array developed in collaboration with the ANU.[96]

Wave power

[edit]

Several projects for harvesting the power of the ocean were attempted:

  • Oceanlinx trialled a wave energy system at Port Kembla, but went bankrupt.
  • Carnegie Corp of Western Australia tried a method of using energy captured from passing waves, CETO.
  • BioPower Systems is developing its bioWAVE system anchored to the seabed that would generate electricity through the movement of buoyant blades as waves pass, in a swaying motion similar to the way sea plants, such as kelp, move. It expects to complete pilot wave and tidal projects off northern Tasmania this year.[101]

Wind power

[edit]
Windy Hill Wind Farm, Atherton Tablelands, Queensland

In 2022, wind power supplied around 35.6% of Australia's renewable electricity and around 12.8% of Australia's total electricity.[3] Eight new wind farms were commissioned in 2022 with a combined capacity of 1,410 MW, bringing the total installed capacity to more than 10.5 GW. As of the end of 2022, 19 wind farms with a combined capacity of 4.7 GW were either under construction or financial committed nationally.[3]

Wind power in Victoria is the most developed with 8,655 GWh generated in 2021, followed by South Australia with 5,408 GWh, New South Wales with 5,384 GWh, Western Australia with 3,407 GWh, Tasmania with 1,859 GWh, and Queensland with 1,772 GWh.[74]

The largest wind farm in Australia is the Stockyard Hill Wind Farm, which opened in 2022 with a capacity of 530 MW. This overtook the 453 MW Coopers Gap Wind Farm.[74][3]

Top 5 operational wind farms by capacity (MW)[3]
Rank Name Capacity (MW) Commissioned
1 Stockyard Hill Wind Farm 532 2022
2 Coopers Gap Wind Farm 453 2021
3 Macarthur Wind Farm 420 2012
4 Dundonnell Wind Farm 336 2021
5 Moorabool Wind Farm 321 2022
Australian wind electricity generation by year[66][67][68][69][70][71][72][73][74][3]
Year 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Generation (GWh) 9259 9777 11802 12903 12873 16171 19487 22605 26804 29892
% of Renewable Electricity 26.6 30.9 33.7 30.8 33.8 33.5 35.4 35.9 35.9 35.6
% of Total Electricity 3.9 4.2 4.9 5.3 5.7 7.1 8.5 9.9 11.7 12.8

Academic literature

[edit]

Australia has a very high potential for renewable energy.[102] Therefore, the transition to a renewable energy system is gaining momentum in the peer-reviewed scientific literature.[103] Among them several studies have examined the feasibility of a transition to a 100% renewable electricity systems, which was found both practicable as well as economically and environmentally beneficial to combat global warming.[104][105][106]

Major renewable energy companies

[edit]

BP Solar

[edit]

BP has been involved in solar power since 1973 and its subsidiary, BP Solar, is now one of the world's largest solar power companies with production facilities in the United States, Spain, India and Australia.[107] BP Solar is involved in the commercialisation of a long life deep cycle lead acid battery, jointly developed by the CSIRO and Battery Energy, which is ideally suited to the storage of electricity for renewable remote area power systems (RAPS).[108]

Edwards

[edit]

Edwards first began manufacturing water heaters in Australia in 1963. Edwards is now an international organisation which is a leader in producing hot water systems for both domestic and commercial purposes using solar technology. Edwards exports to Asia, the Pacific, the Americas, Europe, Africa and the Middle East.[109]

Eurosolar

[edit]

Eurosolar was first formed in 1993, with an aim of providing photovoltaic systems to the masses. It focuses on solar power in multiple Australian capitals. They continue to install panels all around Australia.

Hydro Tasmania

[edit]

Hydro Tasmania was set up by the State Government in 1914 (originally named the Hydro-Electric Department, changed to the Hydro-Electric Commission in 1929, and Hydro Tasmania in 1998). Today Hydro Tasmania is Australia's largest generator of renewable energy. They operate thirty hydro-electric stations and one gas power station, and are a joint owner in three wind farms.

Meridian Energy Australia

[edit]

Meridian Energy Australia runs a number of renewable energy assets (4 wind farms and 4 hydro plants) and only produces renewable energy – it claims to be Australasia's largest 100% renewable energy generator.

Nectr

[edit]

Nectr is an Australian-based electricity retailer that focuses on offering renewable energy plans and services. Launched in 2019,[110] it currently operates in New South Wales, South East Queensland and South Australia, planning to expand to Victoria, Tasmania and the ACT in 2022. Nectr is owned by Hanwha Energy, an affiliate of South Korea's Hanwha Group, one of the global leaders in renewable energy technology, including solar power (Hanwha Q Cells) and battery storage technologies. The company offers 100% carbon offset plans, GreenPower plans and also launched solar and battery installation bundles in Ausgrid and Endeavour within NSW.[111] Its parent company Hanwha Energy Australia is an investor in Australian utility-scale solar power assets,[112] including the 20 MWAC Barcaldine solar farm in Queensland and the 88 MWAC Bannerton solar farm in Victoria. It is currently developing two new solar farms in southern NSW with capacity to produce enough energy to supply 50,000 homes.[113]

Origin Energy

[edit]

Origin Energy is active in the renewable energy arena, and has spent a number of years developing several wind farms in South Australia, a solar cell business using technology invented by a team led by Professor Andrew Blakers at the Australian National University,[114] and geothermal power via a minority shareholding stake in Geodynamics.[115]

Pacific Blue

[edit]

Pacific Blue is an Australian company that specialises in 100% renewable energy generation. Its focus is on hydroelectricity and wind power. Power stations owned by Pacific Blue include wind farms: Codrington Wind Farm, Challicum Hills Wind Farm, Portland Wind Project and Hydro power: Eildon Pondage Power Station, Ord River Hydro Power Station and The Drop Hydro.

Snowy Hydro Limited

[edit]

Snowy Hydro Limited, previously known as the Snowy Mountains Hydro-Electric Authority, manages the Snowy Mountains Scheme which generates on average around 4500 gigawatt hours of renewable energy each year, which represented around 37% of all renewable energy in the National Electricity Market in 2010. The scheme also diverts water for irrigation from the Snowy River Catchment west to the Murray and Murrumbidgee River systems.

Solahart

[edit]

Solahart manufactured its first solar water heater in 1953, and products currently manufactured by Solahart include thermosiphon and split system solar and heat pump water heaters. These are marketed in 90 countries around the world and overseas sales represent 40% of total business. Solahart has a market share of 50% in Australia.[116]

Solar Systems

[edit]

Solar Systems was a leader in high concentration solar photovoltaic applications,[117][118] and the company built a photovoltaic Mildura Solar concentrator power station, Australia.[119][120] This project will use innovative concentrator dish technology to power 45,000 homes, providing 270,000 MWh/year for A$420 million.[121] Solar Systems has already completed construction of three concentrator dish power stations in the Northern Territory, at Hermannsburg, Yuendumu, and Lajamanu, which together generate 1,555 MWh/year (260 homes, going by the energy/home ratio above). This represents a saving of 420,000 litres of diesel fuel and 1550 tonnes of greenhouse gas emissions per year. The total cost of the solar power station was "A$7M, offset by a grant from the Australian and Northern Territory Governments under their Renewable Remote Power Generation Program".[122] The price of diesel in remote areas is high due to added transportation costs: in 2017, retail diesel prices in remote areas of the Northern Territory averaged $1.90 per litre. The 420,000 litres of diesel per year saved by these power stations in the first decade of operation would thus have cost approximately $8,000,000.

Wind Prospect

[edit]

Wind Prospect is a company based in Bristol, UK, founded in 1992.[123][124] An Adelaide-born employee, Michael Vawser, established a separate company of the same name in Adelaide, South Australia, in 2000. The company first created the 46MW Canunda Wind Farm in the south-east of the state (commissioned in March 2005[125]), followed by the 70MW Mount Millar Wind Farm on the Eyre Peninsula. It built many wind farms in SA, and then expanded interstate.[126] As of March 2024 the Australian company is based in Melbourne, Victoria, and has obtained planning approval for 22 wind farms and 2 solar farms in total.[127] The Wind Prospect Group, apart from the UK and Australia, also operates in Ireland, Canada, France (as WPO[128]), and China.[129]

See also

[edit]

References

[edit]
  1. ^ "Coal will be all but gone by 2034 under Australia's latest energy roadmap". UNSW Sites. Retrieved 25 March 2024.
  2. ^ "Major Investors More Confident in Australia's Climate Policy". Bloomberg. 25 March 2024. Retrieved 25 March 2024.
  3. ^ a b c d e f g h i j k l m n o p Clean Energy Council (April 2023). "Clean Energy Australia Report 2023" (PDF). Clean Energy Council. Retrieved 20 April 2023.
  4. ^ "Overview". Geoscience Australia. 27 June 2014. Retrieved 24 March 2024. Australia's transport system is heavily dependent on oil, some of which is imported. At present renewable energy sources account for only modest proportions of Australia's primary energy consumption (around 5 per cent) and electricity generation (7 per cent), although their use has been increasing strongly in recent years.
  5. ^ a b c Tim Flannery; Veena Sahajwalla (November 2012). "Critical Decade: Generating a Renewable Australia". Canberra: Department of Climate Change and Energy Efficiency. Archived from the original on 11 March 2013. Retrieved 2 March 2013.
  6. ^ Poddar, S., Evans, J.P., Kay, M. et al. Assessing Australia’s future solar power ramps with climate projections. Sci Rep 13, 11503 (2023).
  7. ^ Poddar, S., Evans, J. P., Kay, M., Prasad, A., Bremner, S.Estimation of future changes in photovoltaic potential in Australia due to climate change. Environmental Research Letters 2023. 16 (11): 114034
  8. ^ a b "Renewable energy investment to slump beyond 2020 amid policy uncertainty". pv magazine Australia. 3 April 2019. Retrieved 3 April 2019.
  9. ^ Australian Government (2004). Securing Australia's Energy Future Archived 30 October 2006 at the Wayback Machine
  10. ^ a b "International climate action". DCCEEW. Retrieved 25 March 2024.
  11. ^ "Coalition attempts to rewrite history on support for wind, solar and RET". 15 May 2017. Retrieved 15 May 2017.
  12. ^ Australian Government: Office of the Renewable Energy Regulator Archived 26 October 2011 at the Wayback Machine
  13. ^ Parkinson, Giles (4 April 2011). "RET: Hail fellow, not well met". Climate Spectator. Business Spectator. Retrieved 9 March 2013.
  14. ^ a b "Benefit of the Renewable Energy Target to Australia's Energy Markets and Economy. Report to the Clean Energy Council" (PDF). Clean Energy Council. August 2012. Archived from the original (PDF) on 19 April 2013. Retrieved 9 March 2013.
  15. ^ "A Renewable Energy Plan for South Australia" (PDF). RenewablesSA. Government of South Australia. 19 October 2011. Archived from the original (PDF) on 9 April 2013. Retrieved 9 March 2013.
  16. ^ "Australia 2023 – Analysis". IEA. 19 April 2023. Retrieved 17 March 2024.
  17. ^ a b c d e f g h "Australia 2023 Energy Policy Review" (PDF). International Energy Agency (IEA).
  18. ^ "About ARENA". Australian Renewable Energy Agency. Retrieved 15 January 2021.
  19. ^ "Clean Energy Regulator – Liable Entities Public Information Database".
  20. ^ "Clean Energy Australia – Investing in the clean energy sources of the future" (PDF). Clean Energy Future. Commonwealth of Australia. Archived from the original (PDF) on 19 May 2013. Retrieved 10 March 2013.
  21. ^ a b Uren, David (23 January 2013). "Emissions drop signals fall in carbon tax take". The Australian. Retrieved 10 March 2013.
  22. ^ Vorrath, Sophie (17 July 2014). "Australia dumps carbon price, as repeal passes Senate".
  23. ^ Yeates, Clancy (13 April 2015). "Coal makes a comeback thanks to carbon price repeal, emissions rise". The Sydney Morning Herald.
  24. ^ a b "Taxpayers to back $10bn renewable energy fund". The Australian. 17 April 2012. Retrieved 2 March 2013.
  25. ^ "Clean Energy Finance Corporation Expert Review". Clean Energy Future. Commonwealth of Australia. Archived from the original on 3 March 2013. Retrieved 10 March 2013.
  26. ^ "REC Registry". Archived from the original on 3 July 2014. Retrieved 16 November 2013.
  27. ^ "Feed-in tariffs". Parliament of Australia. 21 December 2011. Archived from the original on 26 February 2014. Retrieved 20 April 2013.
  28. ^ "NSW slashes its solar feed-in tariffs". The Fifth Estate. 28 October 2010. Retrieved 20 April 2013.
  29. ^ "Solar feed-in tariffs VIC WA NSW SA TAS QLD NT ACT". Solar Choice. 21 July 2023.
  30. ^ Foley, Mike (27 March 2024). "Australian made solar panels: Solar Sunshot program aims to tap into renewables boom". The Age. Retrieved 28 March 2024.
  31. ^ "Fossil fuel subsidies". Australian Conservation Foundation. Archived from the original on 17 May 2013. Retrieved 20 April 2013.
  32. ^ O'Conner, Simon (25 June 2010). "G20 and fossil fuel subsidies" (PDF). Australian Conservation Foundation. Archived from the original (PDF) on 27 September 2013. Retrieved 20 April 2013.
  33. ^ Berg, Chris (2 February 2011). "The Truth About Energy Subsidies". Institute of Public Affairs. Archived from the original on 27 September 2013. Retrieved 20 April 2013.
  34. ^ "Tasmania to achieve 100 per cent renewables by 2022". Energy Magazine. 3 July 2019. Retrieved 1 September 2019.
  35. ^ Morton, Adam (19 June 2019). "Clean energy found to be a 'pathway to prosperity' for Northern Territory". The Guardian. ISSN 0261-3077. Retrieved 1 September 2019.
  36. ^ Vorrath, Sophie (17 January 2019). "NT on track for 10% renewables by 2020, with two new solar farms announced". RenewEconomy. Retrieved 1 September 2019.
  37. ^ Edis, Tristan (2 July 2019). "While the government is in denial, the states are making staggering progress on renewable energy | Tristan Edis". The Guardian. ISSN 0261-3077. Retrieved 1 September 2019.
  38. ^ Shepherd, Briana (16 October 2018). "WA 'right at the back of the pack' in renewable energy race". ABC News. Retrieved 1 September 2019.
  39. ^ Vorrath, Sophie (31 May 2019). "W.A. councils demand "true to science" 50% renewable state target". RenewEconomy. Retrieved 1 September 2019.
  40. ^ CSIRO (2007). Rural Australia Providing Climate Solutions p.1 [dead link]
  41. ^ a b Australian Conservation Foundation (2007). A Bright Future: 25% Renewable Energy for Australia by 2020 [dead link]
  42. ^ Teske, Sven; Vincent, Julien. "Energy [r]evolution: A Sustainable Energy Australia Outlook" (PDF). Greenpeace International 2008. Archived from the original (PDF) on 13 November 2008.
  43. ^ Spratt, David and Sutton, Phillip, Climate Code Red: The case for a sustainability emergency, Friends of the Earth, Melbourne 2008
  44. ^ "Renewable Energy Target: Legislation to cut RET passes Federal Parliament". ABC. 23 June 2015. Retrieved 13 September 2015.
  45. ^ Australian Government: Office of the Renewable Energy Regulator – LRET-SRES Basics
  46. ^ "Research: Stationary Energy Plan | Industry". www.bze.org.au. Retrieved 29 August 2023.
  47. ^ "How to be fully renewable in 10 years". Sydney Morning Herald. 13 August 2010.
  48. ^ Michael Safi; Shalailah Medhora (22 December 2014). "Tony Abbott says repealing carbon tax his biggest achievement as minister for women". The Guardian. Retrieved 14 June 2016.
  49. ^ "Clean Energy Australia Report 2012" (PDF). Southbank Victoria: Clean Energy Council. March 2013. p. 9. Archived from the original (PDF) on 22 August 2013. Retrieved 18 June 2013.
  50. ^ "Tony Abbott has escalated his war on wind power, causing a cabinet split and putting international investment at risk". 11 July 2015. Retrieved 13 July 2015.
  51. ^ Australia's Nationally Determined Contribution Communication 2022 (PDF) (Report). Department of Industry, Science, Energy and Resources. 2022. Text may have been copied from this source, which is available under a Attribution 4.0 International (CC BY 4.0) licence.
  52. ^ "2017: Biggest year for Australia's Renewable Energy Industry"
  53. ^ "Renewable energy generates enough power to run 70% of Australian homes". The Guardian. 27 August 2017. Retrieved 27 August 2017.
  54. ^ "Australia has met its renewable energy target. But don't pop the champagne". RenewEconomy. 8 September 2019. Retrieved 9 September 2019.
  55. ^ de Atholia, Timoth; Flannigan, Gordon; Lai, Sharon (19 March 2020). "Renewable Energy Investment in Australia". Reserve Bank of Australia.
  56. ^ Mercer, Daniel (11 July 2022). "Australia 'on track' to generate half its electricity from renewable sources by 2025, report finds". ABC News. Australian Broadcasting Corporation. Retrieved 11 July 2022.
  57. ^ "Australian Energy Update 2018" (PDF). Department of Energy and Environment.
  58. ^ "Australian Energy Statistics 2022 Energy Update Report" (PDF).
  59. ^ Renewable Energy Commercialisation in Australia – Biomass Projects Archived 22 June 2008 at the Wayback Machine
  60. ^ Department of Industry and Science (2015), Australian Energy Statistics, Table C.
  61. ^ Summary of report – Biomass energy production in Australia Status, costs and opportunities for major technologies Archived 12 June 2008 at the Wayback Machine
  62. ^ a b Queensland Government. Ethanol case studies Archived 20 August 2007 at the Wayback Machine
  63. ^ The biofuels promise: updated thinking Ecos, October–November 2006.
  64. ^ "Car dependence in Australian cities: a discussion of causes, environmental impact and possible solutions" (PDF). Flinders University study. Archived from the original (PDF) on 1 March 2011. Retrieved 3 February 2015.
  65. ^ "Australia's weaker emissions standards allow car makers to dump polluting cars". The Conversation. 30 September 2015. Retrieved 18 March 2016.
  66. ^ a b c d Clean Energy Council. "Clean Energy Australia Report 2021" (PDF). Clean Energy Council. Retrieved 2 April 2021.
  67. ^ a b c d Clean Energy Council. "Clean Energy Australia Report 2020" (PDF). Clean Energy Council.
  68. ^ a b c d e Clean Energy Council. "Clean Energy Australia Report 2018" (PDF). Clean Energy Council.
  69. ^ a b c d Clean Energy Council. "Clean Energy Australia Report 2013" (PDF). Clean Energy Council. Retrieved 7 February 2022.
  70. ^ a b c d Clean Energy Council. "Clean Energy Australia Report 2014" (PDF). Clean Energy Council. Retrieved 7 February 2022.
  71. ^ a b c d Clean Energy Council. "Clean Energy Australia Report 2015" (PDF). Clean Energy Council. Retrieved 7 February 2022.
  72. ^ a b c d Clean Energy Council. "Clean Energy Australia Report 2016" (PDF). Clean Energy Council. Retrieved 7 February 2022.
  73. ^ a b c d Clean Energy Council. "Clean Energy Australia Report 2019" (PDF). Clean Energy Council. Retrieved 7 February 2022.
  74. ^ a b c d e f Clean Energy Council. "Clean Energy Australia Report 2022" (PDF). Clean Energy Council. Retrieved 5 April 2022.
  75. ^ a b Big energy role for central Australia's hot rocks Mineweb, 2 May 2007.
  76. ^ Scientists get hot rocks off over green nuclear power The Sydney Morning Herald, 12 April 2007.
  77. ^ Energy superpower or sustainable energy leader? (PDF) Ecos, October–November 2007.
  78. ^ "Green hydrogen innovation hub to be built in WA". Australian Renewable Energy Agency. 3 July 2018. Retrieved 24 March 2024.
  79. ^ "ATCO Hydrogen Microgrid". Australian Renewable Energy Agency. 19 October 2021. Retrieved 23 March 2024.
  80. ^ a b "Whyalla Hydrogen Facility". Infrastructure Pipeline. 16 December 2022. Retrieved 24 March 2024.
  81. ^ Simmons, David (19 March 2024). "WA hydrogen project is almost four times larger than Whyalla's". InDaily. Retrieved 23 March 2024.
  82. ^ "Whyalla at the epicentre of a hydrogen-powered industrial renaissance". Office of Hydrogen Power South Australia. 25 February 2024. Retrieved 24 March 2024.
  83. ^ Marshall, Alys; Murphy, Hannah (18 March 2024). "Outback Australia enters green hydrogen race with multi-billion-dollar project given government backing". ABC News. Retrieved 23 March 2024.
  84. ^ Simmons, David (19 March 2024). "WA hydrogen project is almost four times larger than Whyalla's". InDaily. Retrieved 23 March 2024.
  85. ^ Snowy Hydro: Power Stations. Retrieved 19 November 2010 Archived 21 March 2010 at the Wayback Machine
  86. ^ "About". Snowy Hydro. Retrieved 1 November 2020.
  87. ^ "Hydro: Energy". Retrieved 30 September 2011.
  88. ^ "Australian PV market since April 2001". apvi.org.au.
  89. ^ Lovegrove, Keith and Dennis, Mike. Solar thermal energy systems in Australia International Journal of Environmental Studies, Vol. 63, No. 6, December 2006, p. 791.
  90. ^ Lovegrove, Keith and Dennis, Mike. Solar thermal energy systems in Australia International Journal of Environmental Studies, Vol. 63, No. 6, December 2006, p. 793.
  91. ^ Australian Bureau of Statistics (3 December 2014). "Environmental Issues: Energy Use and Conservation, Mar 2014". Retrieved 14 June 2016.
  92. ^ PJT Solar Hot Water Archived 20 April 2009 at the Wayback Machine
  93. ^ "Clean Energy Australia 2010 (Report)" (PDF). Official site. Clean Energy Council. pp. 5, 42. Archived from the original (PDF) on 25 February 2011. Retrieved 12 June 2011.
  94. ^ CSIRO Solar Blog. Retrieved Nov 2011, http://csirosolarblog.com
  95. ^ 'CSIRO Gets Sun Smart at the National Solar Energy Centre', June 2008, http://www.csiro.au/places/SolarEnergyCentre.html Archived 4 July 2018 at the Wayback Machine
  96. ^ a b Lovegrove, Keith and Dennis, Mike. Solar thermal energy systems in Australia International Journal of Environmental Studies, Vol. 63, No. 6, December 2006, p. 797.
  97. ^ Lovegrove, K.; Burgess, G.; Pye, J. (1 April 2011). "A new 500m2 paraboloidal dish solar concentrator". Solar Energy. SolarPACES 2009. 85 (4): 620–626. Bibcode:2011SoEn...85..620L. doi:10.1016/j.solener.2010.01.009. ISSN 0038-092X.
  98. ^ Solar Oasis: About
  99. ^ ABC Rural (Australian Broadcasting Corporation)
  100. ^ Edis, Tristan (12 June 2013). "Special report: Why did Whyalla solar fall over?". The Australian. Retrieved 13 December 2023.
  101. ^ "FACTBOX-Main renewables being developed in Australia". Reuters. 4 February 2009.
  102. ^ Shafiullah et al., Prospects of renewable energy e a feasibility study in the Australian context. In: Renewable Energy 39, (2012), 183–197, doi:10.1016/j.renene.2011.08.016.
  103. ^ Byrnes, L.; Brown, C.; Foster, J.; Wagner, L. (December 2013). "Australian renewable energy policy: Barriers and challenges". Renewable Energy. 60: 711–721. doi:10.1016/j.renene.2013.06.024.
  104. ^ Elliston et al, Simulations of scenarios with 100% renewable electricity in the Australian National Electricity Market. In: Energy Policy 45, (2012), 606–613, doi:10.1016/j.enpol.2012.03.011.
  105. ^ Elliston et al, Least cost 100% renewable electricity scenarios in the Australian National Electricity Market. In: Energy Policy 59, (2013), 270–282, doi:10.1016/j.enpol.2013.03.038.
  106. ^ Elliston et al. Comparing least cost scenarios for 100% renewable electricity with low emission fossil fuel scenarios in the Australian National Electricity Market. In: Renewable Energy 66, (2014), 196–204, doi:10.1016/j.renene.2013.12.010.
  107. ^ Solar Power Profitability: BP Solar Environmental News Network, 25 May 2005.
  108. ^ Wind energy round the clock
  109. ^ Edwards solar hot water
  110. ^ "Kudos, PV solutions for the masses and IP wars: the importance of being Q Cells". pv magazine Australia. 21 October 2019. Retrieved 7 June 2021.
  111. ^ "About us". Nectr. Retrieved 7 June 2021.
  112. ^ "Nectr switched on for 100 days". pv magazine Australia. 18 May 2020. Retrieved 7 June 2021.
  113. ^ "Nectr executive scores CEC Women in Renewables AICD scholarship". pv magazine Australia. 4 May 2020. Retrieved 7 June 2021.
  114. ^ Origin Energy. SLIVER technology facts sheet
  115. ^ Geodynamics: Power from the earth
  116. ^ Solahart Industries Archived 30 August 2007 at the Wayback Machine
  117. ^ Solar Systems.Solar Systems wins National Engineering Excellence award Archived 21 February 2007 at the Wayback Machine
  118. ^ Solar technologies reaching new levels of efficiencies in Central Australia ABC Radio Australia, 12 November 2006.
  119. ^ Solar Systems to Build A$420 million, 154MW Solar Power Plant in Australia
  120. ^ Solar Systems. Solar Systems home page Archived 21 March 2007 at the Wayback Machine
  121. ^ "Large Scale Solar Power" (PDF). Archived from the original (PDF) on 18 July 2008. Retrieved 20 March 2009.
  122. ^ [1] Archived 3 December 2008 at the Wayback Machine
  123. ^ "Wind Prospect Group Ltd Profile". Environmental XPRT. 28 March 2024. Retrieved 28 March 2024.
  124. ^ "Wind Prospect Group Limited overview". GOV.UK. 25 September 1996. Retrieved 28 March 2024.
  125. ^ "Canunda". Wind Prospect. Archived from the original on 3 July 2007.
  126. ^ Bezzina, Lauren (7 April 2016). "The weather business: Wind Prospect". CityMag. Retrieved 28 March 2024.
  127. ^ "renewable energy project developer". Wind Prospect. Retrieved 28 March 2024.
  128. ^ "About". WPO. 28 March 2024. Retrieved 28 March 2024.
  129. ^ "Wind Prospect Group Ltd". Bloomberg.com. Retrieved 28 March 2024.

Further reading

[edit]
[edit]
Articles