Cochlodinium polykrikoides

From Wikipedia, the free encyclopedia

Cochlodinium polykrikoides
A Cochlodinium polykrikoides bloom in Narragansett Bay, RI.
Scientific classification Edit this classification
Domain: Eukaryota
Clade: Diaphoretickes
Clade: SAR
Clade: Alveolata
Phylum: Myzozoa
Superclass: Dinoflagellata
Class: Dinophyceae
Order: Gymnodiniales
Family: Gymnodiniaceae
Genus: Cochlodinium
Species:
C. polykrikoides
Binomial name
Cochlodinium polykrikoides

Cochlodinium polykrikoides (or Margalefidinium polykrikoides) is a species of red tide producing marine dinoflagellates known for causing fish kills around the world, and well known for fish kills in marine waters of Southeast Asia.[2][3] C. polykrikoides has a wide geographic range, including North America, Central America, Western India, Southwestern Europe and Eastern Asia.[4] Single cells of this species are ovoidal in shape, 30-50μm in length and 25-30μm in width.[5]

Cochlodinium polykrikoides is a highly motile organism. They are generally found in aggregations of 4 or 8 cell zooids. Chain length is known to be affected by the presence of grazers and the inclusion of vitamins B1, B7 and B12.[6] This species is also capable of mixotrophy, which makes them extremely persistent during a large algal bloom.[7] C. polykrikoides exhibits diel vertical migration.[8]

Cochlodinium is thought to have a cyst-type overwintering stage in their life cycle. This process allows C. polykrikoides to produce a specialized cell that is non-motile. These cells aggregate and rest in certain basins until conditions allow for reproduction and colonies to form.[9]

Optimal growth conditions[edit]

Cochlodinium polykrikoides is a euryhaline species, capable of surviving a wide range of salinities. Growth experiments have shown that C. polykrikoides can have greater than 0.3 divisions day−1 in optimal growth conditions (25 °C, 34ppt).[10] The growth range C. polykrikoides is 15 °C-30 °C, 20-36ppt and >30μmol m−2 s−1 irradiance.[10] There has been no observed photo-inhibition for C. polykrikoides under high irradiance.

Toxicity[edit]

Cochlodinium polykrikoides is a species that can produce allelopathic chemicals.[11] These chemicals inhibit the growth of other phytoplankton taxa in the water column. The production of such toxins can play important roles in the formation of Harmful Algal Blooms. C. polykrikoides can also generate reactive oxygen species[12] which are lethal to both pelagic fish and shellfish even in low concentrations.

Massive blooms[edit]

In late 2008 and early 2009 (November–February) there was a massive bloom of Cochlodinium polykrikoides in the Sea of Oman, off the coast of Oman in the Persian Sea.[13] It was notable for being based on Cochlodinium polykrikoides rather than the Noctiluca scintillans (Noctiluca miliaris) that had been more usual in the immediately previous years.[14][15] The bloom resulted in massive dying off of fish, damage to coral reefs, and interference with desalinization plants.[15]

Conditions for a bloom[edit]

  1. Sea Surface Temperature (SST)- SST has been shown to be a huge factor in the growth of C. polykrikoides and thus determining when blooms form.[16] Lab studies have shown that C. polykrikoides have the most significant growth between 25.0˚C and 26.0˚C.[17][18]
  2. Photosynthetically Available Radiation (PAR)- As for almost all planktonic species, there needs to be enough light for these phytoplankton to photosynthesize. Studies have proven that C. polykrikoides have higher growth rates when solar insolation is increased.[7]
  3. Favorable Transport- Many are unsure of the source of where C. polykrikoides are generally found, however, currents play an important role when transporting these toxic phytoplankton to favorable areas for a bloom to spawn.[16]
  4. Upwelling- The nutrient-rich waters that are brought to the photic layer by upwelling hold nutrients (nitrogen compounds, phosphorus compounds, etc.) that are essential in photosynthesis and cell growth. An appropriate wind is needed to cause this upwelling and while also ensuring temperature and transport are also favorable for C. polykrikoides blooms.[16]

As climate change continues to affect the oceans, it is predicted that harmful algal blooms (such as red tides caused by Cochlodinium polykrikoides) will be more frequent in the upcoming years.[18]

References[edit]

  1. ^ Guiry, M .D. & G. M. Guiry. 2013. Cochlodinium polykrikoides. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Accessed 10 June 2013.
  2. ^ Kim, Chang Sook; Sam Geun Lee; Chang Kyu Lee; Hak Gyoon Kim; Jin Jung (1999). "Reactive oxygen species as causative agents in the ichthyotoxicity of the red tide dinoflagellate Cochlodinium polykrikoides". Journal of Plankton Research. 21 (11): 2105–2115. doi:10.1093/plankt/21.11.2105.
  3. ^ Gobler, Christopher J.; Dianna L. Berry; O. Roger Anderson; Amanda Burson; Florian Koch; Brooke S. Rodgers; Lindsay K. Moore; Jennifer A. Goleski; Bassem Allam; Paul Bowser; Yingzhong Tang; Robert Nuzzi (2008). "Characterization, dynamics, and ecological impacts of harmful Cochlodinium polykrikoides blooms on eastern Long Island, NY, USA". Harmful Algae. 7 (3): 293–307. doi:10.1016/j.hal.2007.12.006.
  4. ^ Kudela, Raphael M.; Ryan, John P.; Blakely, Melissa D.; Lane, Jenny Q.; Peterson, Tawnya D. (2008-04-01). "Linking the physiology and ecology of Cochlodinium to better understand harmful algal bloom events: A comparative approach". Harmful Algae. Recent Progress on the Research and Management of Cochlodinium Blooms. 7 (3): 278–292. doi:10.1016/j.hal.2007.12.016. ISSN 1568-9883.
  5. ^ Matsuoka, Kazumi; Iwataki, Mitsunori; Kawami, Hisae (2008-04-01). "Morphology and taxonomy of chain-forming species of the genus Cochlodinium (Dinophyceae)". Harmful Algae. Recent Progress on the Research and Management of Cochlodinium Blooms. 7 (3): 261–270. doi:10.1016/j.hal.2007.12.002. hdl:10069/20076. ISSN 1568-9883. S2CID 84383833.
  6. ^ Jiang, Xiaodong; Lonsdale, Darcy J.; Gobler, Christopher J. (2010). "Grazers and vitamins shape chain formation in a bloom-forming dinoflagellate, Cochlodinium polykrikoides". Oecologia. 164 (2): 455–464. Bibcode:2010Oecol.164..455J. doi:10.1007/s00442-010-1695-0. ISSN 0029-8549. JSTOR 40864701. PMID 20589396. S2CID 20677619.
  7. ^ a b Tomas, Carmelo R.; Smayda, Theodore J. (2008-04-01). "Red tide blooms of Cochlodinium polykrikoides in a coastal cove". Harmful Algae. Recent Progress on the Research and Management of Cochlodinium BloomsWorkshop of Recent Progress on the Research and Management of Cochlodinium Blooms. 7 (3): 308–317. doi:10.1016/j.hal.2007.12.005.
  8. ^ Park, Jong Gyu; Jeong, Min Kyung; Lee, Jin Ae; Cho, Kyung-Je; Kwon, O.-Soeb (2001-05-01). "Diurnal vertical migration of a harmful dinoflagellate, Cochlodinium polykrikoides (Dinophyceae), during a red tide in coastal waters of Namhae Island, Korea". Phycologia. 40 (3): 292–297. Bibcode:2001Phyco..40..292P. doi:10.2216/i0031-8884-40-3-292.1. ISSN 0031-8884. S2CID 85986872.
  9. ^ Kim, Hyeung-Sin; Kim, Seung-Hyun; Jung, Min-Min; Lee, Joon-Baek (2013). "New Record of Dinoflagellates around Jeju Island". Journal of Ecology and Environment. 36 (4): 273–291. Bibcode:2013JEcEn..36..273K. doi:10.5141/ecoenv.2013.273.
  10. ^ a b Kim, Dae-Il; Matsuyama, Yukihiko; Nagasoe, Sou; Yamaguchi, Mineo; Yoon, Yang-Ho; Oshima, Yuji; Imada, Nobuyoshi; Honjo, Tsuneo (2004-01-01). "Effects of temperature, salinity and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae)". Journal of Plankton Research. 26 (1): 61–66. doi:10.1093/plankt/fbh001. ISSN 0142-7873.
  11. ^ Tang, Ying Zhong; Gobler, Christopher J. (2010-05-10). "Allelopathic effects of Cochlodinium polykrikoides isolates and blooms from the estuaries of Long Island, New York, on co-occurring phytoplankton". Marine Ecology Progress Series. 406: 19–31. Bibcode:2010MEPS..406...19T. doi:10.3354/meps08537. ISSN 0171-8630.
  12. ^ Kim, Chang Sook; Lee, Sam Geun; Lee, Chang Kyu; Kim, Hak Gyoon; Jung, Jin (1999-11-01). "Reactive oxygen species as causative agents in the ichthyotoxicity of the red tide dinoflagellate Cochlodinium polykrikoides". Journal of Plankton Research. 21 (11): 2105–2115. doi:10.1093/plankt/21.11.2105. ISSN 0142-7873.
  13. ^ Richlen, M. L.; Morton, S. L.; Jamali, E. A.; Rajian, A.; Anderson, D. M. (2010). "The catastrophic 2008-2009 red tide in the persian Gulf region, with observations on the identification and phyloheny of the fish-killing dinoflagellate Cochlodinium polykrikoides". Harmful Algae. 9 (2): 163–172. doi:10.1016/j.hal.2009.08.013.
  14. ^ Parab, Sushma G.; Matondkar, S. G. Prabhu; Gomes, H. do R.; Goes, J. I. (2006). "Monsoon driven changes in phytoplankton populations in the eastern persian Sea as revealed by microscopy and HPLC pigment analysis". Continental Shelf Research. 26 (20): 2538–2558. doi:10.1016/j.csr.2006.08.004.
  15. ^ a b Al-Azri, Adnan R.; et al. (2014). "Mesoscale and Nutrient Conditions Associated with the Massive 2008 Cochlodinium polykrikoides Bloom in the Sea of Oman/persian Gulf". Estuaries and Coasts. 37 (2): 325–338. doi:10.1007/s12237-013-9693-1. S2CID 54691855.
  16. ^ a b c Kim, Dae-Won; Jo, Young-Heon; Choi, Jong-Kuk; Choi, Jang-Geun; Bi, Hongsheng (2016-05-01). "Physical processes leading to the development of an anomalously large Cochlodinium polykrikoides bloom in the East sea/Japan sea". Harmful Algae. 55: 250–258. doi:10.1016/j.hal.2016.03.019. PMID 28073539.
  17. ^ "Distributions of water temperature and salinity in the Korea southern coastal water during Cochlodinium polykrikoides blooms". Journal of the Korean Society for Marine Environment & Energy. 12 (4): 235–247. 2009.
  18. ^ a b Griffith, Andrew W.; Gobler, Christopher J. (2016-03-08). "Temperature controls the toxicity of the ichthyotoxic dinoflagellate Cochlodinium polykrikoides". Marine Ecology Progress Series. 545: 63–76. Bibcode:2016MEPS..545...63G. doi:10.3354/meps11590. S2CID 88174679.