Draft:Remote surface-enhanced Raman spectroscopy

From Wikipedia, the free encyclopedia
  • Comment: This stub should simply be added to the existing SERS page, it does not merit a separate article. Ldm1954 (talk) 18:48, 16 January 2024 (UTC)

Remote surface-enhanced Raman spectroscopy (SERS) consists of using metallic nanowaveguides supporting propagating surface plasmon polaritons (SPPs) to perform SERS at a distant location different to the one of the incident laser.

Propagating SPPs supported by nanowires has been used to show the remote excitation.[1][2], as well as the remote detection of SERS[3]. A silver nanowire was also used to shown remote excitation and detection using graphene as Raman scatterer[4]

Applications

Different plasmonic systems have already been used to show Raman detection of biomolecules in vivo in cells and remote excitation of surface catalytic reactions.

References[edit]

  1. ^ Hutchison, James A.; Centeno, Silvia P.; Odaka, Hideho; Fukumura, Hiroshi; Hofkens, Johan; Uji-i, Hiroshi (11 March 2009). "Subdiffraction Limited, Remote Excitation of Surface Enhanced Raman Scattering". Nano Letters. 9 (3): 995–1001. Bibcode:2009NanoL...9..995H. doi:10.1021/nl8030696. PMID 19199757.
  2. ^ Fang, Yurui; Wei, Hong; Hao, Feng; Nordlander, Peter; Xu, Hongxing (13 May 2009). "Remote-Excitation Surface-Enhanced Raman Scattering Using Propagating Ag Nanowire Plasmons". Nano Letters. 9 (5): 2049–2053. Bibcode:2009NanoL...9.2049F. doi:10.1021/nl900321e. PMID 19391601.
  3. ^ Sun, Mengtao; Hou, Yanxue; Xu, Hongxing (5 October 2011). "Can information of chemical reaction propagate with plasmonic waveguide and be detected at remote terminal of nanowire?". Nanoscale. 3 (10): 4114–4116. Bibcode:2011Nanos...3.4114S. doi:10.1039/C1NR10981B. PMID 21931891.
  4. ^ Coca-López, Nicolás; Hartmann, Nicolai F.; Mancabelli, Tobia; Kraus, Jürgen; Günther, Sebastian; Comin, Alberto; Hartschuh, Achim (7 June 2018). "Remote excitation and detection of surface-enhanced Raman scattering from graphene". Nanoscale. 10 (22): 10498–10504. doi:10.1039/C8NR02174K. PMID 29799601.