Jingbo Wang

From Wikipedia, the free encyclopedia
Jingbo Wang
EducationPhD, Quantum Physics, University of Adelaide
Occupation(s)Professor, Head of Physics Department, University of Western Australia

Jingbo Wang is an Australian quantum physicist working in the area of quantum simulation, quantum algorithms, and quantum information science.

Education[edit]

Wang received her PhD from the Department of Physics and Mathematical Physics, University of Adelaide, Australia.[1]

Academic career[edit]

Wang is currently a Professor and Head of the Physics Department at the University of Western Australia.[1] She directs the QUISA (Quantum Information, Simulation and Algorithms) Research Centre, which aims to foster collaboration and entrepreneurship, bringing together academic staff, research students, government and industrial partners to develop innovative quantum solutions to tackle otherwise intractable problems and complex phenomena.[2][3][4] Professor Wang is also the Chair of Australian Institute of Physics (WA Branch).[5]

Her team carried out research involving especially single and multi-particle quantum walks,[6][7][8][9] demonstrating their power in analyzing complex networks,[10][11][12] in identifying topological similarities in complex systems,[6][7][13][14] in image processing and machine learning,[15][16] and in optimizing combinatorial problems.[17][18][19][20] They have also obtained highly efficient quantum circuits to implement quantum algorithms of practical importance.[21][22][23][24][25]

Honours and recognition[edit]

  • Vice-Chancellor’s Award for Research Mentorship, The University of Western Australia (2022)[26]
  • Fellow, Australian Institute of Physics (2020)[27]
  • WA Dennis Moore Award for achievements in quantum computing research, Australian Computer Society (2018)[4]

Books[edit]

  • Josh Izaac and Jingbo Wang, Computational Quantum Mechanics, Springer (2018)[28]
  • Kia Manouchehri and Jingbo Wang, Physical Implementation of Quantum Walks, Springer (2014)[29]

References[edit]

  1. ^ a b "Jingbo Wang". The University of Western Australia.
  2. ^ "QUISA". The University of Western Australia.
  3. ^ "Grant quantum leap for women in STEM". Mirage News.
  4. ^ a b "ACS DENNIS MOORE ORATION 2018".
  5. ^ "AIP (WA Branch)".
  6. ^ a b Manouchehri, Kia (2013), Physical Implementation of Quantum Walks, Springer, doi:10.1007/978-3-642-36014-5_3
  7. ^ a b Berry, Scott D.; Wang, Jingbo B. (2011). "Two-particle quantum walks: Entanglement and graph isomorphism testing". Physical Review A. 83 (4): 042317. Bibcode:2011PhRvA..83d2317B. doi:10.1103/physreva.83.042317.
  8. ^ Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O’Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F. (2016). "Efficient quantum walk on a quantum processor". Nature Communications. 7 (1): 11511. arXiv:1510.08657. Bibcode:2016NatCo...711511Q. doi:10.1038/ncomms11511. PMC 4858748. PMID 27146471.
  9. ^ Qu, Dengke; Marsh, Samuel; Wang, Kunkun; Xiao, Lei; Wang, Jingbo; Xue, Peng (2022). "Deterministic Search on Star Graphs via Quantum Walks". Physical Review Letters. 128 (5): 050501. Bibcode:2022PhRvL.128e0501Q. doi:10.1103/physrevlett.128.050501. PMID 35179941. S2CID 246505309.
  10. ^ Berry, Scott D.; Wang, Jingbo B. (2010). "Quantum-walk-based search and centrality". Physical Review A. 82 (4): 042333. arXiv:1010.0764. Bibcode:2010PhRvA..82d2333B. doi:10.1103/physreva.82.042333. S2CID 118435265.
  11. ^ Loke, T.; Tang, J. W.; Rodriguez, J.; Small, M.; Wang, J. B. (2016). "Comparing classical and quantum PageRanks". Quantum Information Processing. 16 (1). arXiv:1511.04823. doi:10.1007/s11128-016-1456-z. S2CID 254987229.
  12. ^ Izaac, Josh A.; Zhan, Xiang; Bian, Zhihao; Wang, Kunkun; Li, Jian; Wang, Jingbo B.; Xue, Peng (2017). "Centrality measure based on continuous-time quantum walks and experimental realization". Physical Review A. 95 (3): 032318. arXiv:1702.03493. Bibcode:2017PhRvA..95c2318I. doi:10.1103/physreva.95.032318. S2CID 118861817.
  13. ^ Douglas, Brendan L; Wang, Jingbo B (2008). "A classical approach to the graph isomorphism problem using quantum walks". Journal of Physics A: Mathematical and Theoretical. 41 (7): 075303. arXiv:0705.2531. Bibcode:2008JPhA...41g5303D. doi:10.1088/1751-8113/41/7/075303. S2CID 119616290.
  14. ^ Qiang, Xiaogang; Wang, Yizhi; Xue, Shichuan; Ge, Renyou; Chen, Lifeng; Liu, Yingwen; Huang, Anqi; Fu, Xiang; Xu, Ping; Yi, Teng; Xu, Fufang; Deng, Mingtang; Wang, Jingbo B.; Meinecke, Jasmin D. A.; Matthews, Jonathan C. F. (2021). "Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor". Science Advances. 7 (9). Bibcode:2021SciA....7.8375Q. doi:10.1126/sciadv.abb8375. PMC 7909884. PMID 33637521. S2CID 232059344.
  15. ^ Yu, CH; Gao, F; Liu, C; Huynh, D; Reynolds, M; Wang, J (2019). "Quantum algorithm for visual tracking". Physical Review. A 99 (2): 022301. arXiv:1807.00476. Bibcode:2019PhRvA..99b2301Y. doi:10.1103/PhysRevA.99.022301. S2CID 119335479.
  16. ^ Yu, CH; Gao, F; Lin, S; Wang, JB (2019). "Quantum data compression by principal component analysis". Quantum Information Processing. 18 (8): 249. arXiv:1810.10710. Bibcode:2019QuIP...18..249Y. doi:10.1007/s11128-019-2364-9. OCLC 1196616436. S2CID 119233323.
  17. ^ Marsh, S.; Wang, J. B. (2019). "A quantum walk-assisted approximate algorithm for bounded NP optimisation problems". Quantum Information Processing. 18 (3): 61. arXiv:1804.08227. Bibcode:2019QuIP...18...61M. doi:10.1007/s11128-019-2171-3. S2CID 254986174.
  18. ^ Marsh, S.; Wang, J. B. (2020). "Combinatorial optimization via highly efficient quantum walks". Physical Review Research. 2 (2): 023302. arXiv:1912.07353. Bibcode:2020PhRvR...2b3302M. doi:10.1103/physrevresearch.2.023302. S2CID 216080740.
  19. ^ Slate, N.; Matwiejew, E.; Marsh, S.; Wang, J. B. (2021). "Quantum walk-based portfolio optimisation". Quantum. 5: 513. arXiv:2011.08057. Bibcode:2021Quant...5..513S. doi:10.22331/q-2021-07-28-513. S2CID 226965332.
  20. ^ Bennett, T.; Matwiejew, E.; Marsh, S.; Wang, J. B. (2021). "Quantum Walk-Based Vehicle Routing Optimisation". Frontiers in Physics. 9: 692. arXiv:2109.14907. Bibcode:2021FrP.....9..692B. doi:10.3389/fphy.2021.730856.
  21. ^ Douglas, B. L.; Wang, J. B. (2009). "Efficient quantum circuit implementation of quantum walks". Physical Review A. 79 (5): 052335. arXiv:0706.0304. Bibcode:2009PhRvA..79e2335D. doi:10.1103/physreva.79.052335. S2CID 119128490.
  22. ^ Loke, T.; Wang, J. B. (2012). "Efficient circuit implementation of quantum walks on non-degree-regular graphs". Physical Review A. 86 (4): 042338. Bibcode:2012PhRvA..86d2338L. doi:10.1103/physreva.86.042338.
  23. ^ Loke, T; Wang, J B (2017). "Efficient quantum circuits for Szegedy quantum walks". Annals of Physics. 382: 64–84. arXiv:1609.00173. Bibcode:2017AnPhy.382...64L. doi:10.1016/j.aop.2017.04.006. S2CID 119248071.
  24. ^ Zhou, S. S.; Loke, T.; Izaac, J. A.; Wang, J. B. (2017). "Quantum Fourier transform in computational basis". Quantum Information Processing. 16 (3): 82. arXiv:1511.04818. Bibcode:2017QuIP...16...82Z. doi:10.1007/s11128-017-1515-0. S2CID 254988405.
  25. ^ Qiang, Xiaogang; Zhou, Xiaoqi; Wang, Jianwei; Wilkes, Callum M.; Loke, Thomas; O’Gara, Sean; Kling, Laurent; Marshall, Graham D.; Santagati, Raffaele; Ralph, Timothy C.; Wang, Jingbo B.; O’Brien, Jeremy L.; Thompson, Mark G.; Matthews, Jonathan C. F. (2018). "Large-scale silicon quantum photonics implementing arbitrary two-qubit processing". Nature Photonics. 12 (9): 534–539. arXiv:1809.09791. Bibcode:2018NaPho..12..534Q. doi:10.1038/s41566-018-0236-y. S2CID 256703007.
  26. ^ "Inspiring researchers honoured in Vice-Chancellor awards".
  27. ^ "The Australian Institute of Physics - Fellows List".
  28. ^ Izaac, Joshua; Wang, Jingbo (2018). Computational Quantum Mechanics. Undergraduate Lecture Notes in Physics. Bibcode:2018cqm..book.....I. doi:10.1007/978-3-319-99930-2. ISBN 978-3-319-99929-6. Retrieved 2023-02-04.
  29. ^ Manouchehri, Kia; Wang, Jingbo (2014). Physical Implementation of Quantum Walks. doi:10.1007/978-3-642-36014-5. ISBN 978-3-642-36013-8. Retrieved 2023-02-04.

External links[edit]