Methylomirabilis oxyfera

From Wikipedia, the free encyclopedia

Methylomirabilis oxyfera
Methylomirabilis sp.. Scale bar; 200 nm.[1]
Scientific classification
Domain:
Phylum:
Class:
"Methylomirabilacaea"[2]
Order:
"Methylomirabilales"[2]
Family:
"Methylomirabilaceae"
Genus:
"Ca. Methylomirabilis"
Binomial name
"Ca. Methylomirabilis oxygeniifera"
corrig. Ettwig et al. 2010

Candidatus "Methylomirabilis oxyfera" is a candidate species of Gram-negative bacteria belonging to the NC10 phylum, characterized for its capacity to couple anaerobic methane oxidation with nitrite reduction in anoxic environments.[3][4] To acquire oxygen for methane oxidation, M. oxyfera utilizes an intra-aerobic pathway through the reduction of nitrite (NO2) to dinitrogen (N2) and oxygen.[5]

Enrichment[edit]

Enriched Ca. "M. oxyfera" cells have been identified as primarily having a unique polygonal cell shape through the use of electron microscopy techniques. Unlike methanotrophic Pseudomonadota, Ca. "M. oxyfera" cells lack intracytoplasmic membranes when grown under laboratory conditions.[6] The optimum growth ranges for Ca. "M. oxyfera" is between pH 7-8 and 25-30 °C.[3] Ca. "M. oxyfera"cell envelopes are Gram-negative and are generally 0.25–0.5 μm in diameter and 0.8–1.1 μm in length.[3][6]

Methane oxidation[edit]

Ca. "M. oxyfera" has the capacity to disproportionate nitric oxide into oxygen and nitrogen gas. This intermediate oxygen is then used in the oxidation of methane into carbon dioxide.[3][5]

Overall reactions[edit]

Nitrogen oxide dismutation:

2 NO2 → 2 NO → N2 + O2

Methane oxidation:

O2 + CH4 → CH3OH → CO2

Environmental significance[edit]

Ca. "M. oxyfera" has been identified in several environments including rice paddy soil in China,[7] multiple river and lake sediments,[8] and wastewater sludge in The Netherlands.[9] Ca. "M. oxyfera" is predicted to inhabit environments with high concentrations of nitrogen and methane, near boundaries that separate oxic and anoxic zones. It is suggested that Ca. "M. oxyfera" and similar organisms contribute to the global carbon and nitrogen cycles. These organisms may also play a role in reducing the nutrient loads within freshwater ecosystems that have been contaminated with fertilizers.[8]

See also[edit]

References[edit]

  1. ^ Lavinia Gambelli, Geert Cremers, Rob Mesman, Simon Guerrero, Bas E. Dutilh, Mike S. M. Jetten, Huub J. M. Op den Camp, Laura van Niftrik: Ultrastructure and Viral Metagenome of Bacteriophages from an Anaerobic Methane Oxidizing Methylomirabilis Bioreactor Enrichment Culture. In: Frontiers in Microbiology, volume7, p1740, 8 Nov 2016, doi:10.3389/fmicb.2016.01740, ISSN 1664-302X
  2. ^ a b Léa Cabrol et al: Anaerobic oxidation of methane and associated microbiome in anoxic water of Northwestern Siberian lakes. In: Science of the Total Environment Volume 736, 20 September 2020, 139588, doi:10.1016/j.scitotenv.2020.139588. Section 3.3
  3. ^ a b c d Ettwig, Katharina F.; Butler, Margaret K.; Le Paslier, Denis; Pelletier, Eric; Mangenot, Sophie; Kuypers, Marcel M. M.; Schreiber, Frank; Dutilh, Bas E.; Zedelius, Johannes; de Beer, Dirk; Gloerich, Jolein (March 2010). "Nitrite-driven anaerobic methane oxidation by oxygenic bacteria". Nature. 464 (7288): 543–548. Bibcode:2010Natur.464..543E. doi:10.1038/nature08883. hdl:2066/84284. ISSN 1476-4687. PMID 20336137. S2CID 205220000.
  4. ^ Haroon, Mohamed F.; Hu, Shihu; Shi, Ying; Imelfort, Michael; Keller, Jurg; Hugenholtz, Philip; Yuan, Zhiguo; Tyson, Gene W. (August 2013). "Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage". Nature. 500 (7464): 567–570. Bibcode:2013Natur.500..567H. doi:10.1038/nature12375. ISSN 1476-4687. PMID 23892779. S2CID 4368118.
  5. ^ a b Wu, Ming L.; Ettwig, Katharina F.; Jetten, Mike S. M.; Strous, Marc; Keltjens, Jan T.; Niftrik, Laura van (2011-02-01). "A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus 'Methylomirabilis oxyfera'". Biochemical Society Transactions. 39 (1): 243–248. doi:10.1042/BST0390243. hdl:2066/91512. ISSN 0300-5127. PMID 21265781.
  6. ^ a b Wu, M. L.; van Teeseling, M. C. F.; Willems, M. J. R.; van Donselaar, E. G.; Klingl, A.; Rachel, R.; Geerts, W. J. C.; Jetten, M. S. M.; Strous, M.; van Niftrik, L. (2012-01-15). "Ultrastructure of the Denitrifying Methanotroph "Candidatus Methylomirabilis oxyfera," a Novel Polygon-Shaped Bacterium". Journal of Bacteriology. 194 (2): 284–291. doi:10.1128/JB.05816-11. ISSN 0021-9193. PMC 3256638. PMID 22020652.
  7. ^ He, Zhanfei; Cai, Chaoyang; Wang, Jiaqi; Xu, Xinhua; Zheng, Ping; Jetten, Mike S. M.; Hu, Baolan (October 2016). "A novel denitrifying methanotroph of the NC10 phylum and its microcolony". Scientific Reports. 6 (1): 32241. Bibcode:2016NatSR...632241H. doi:10.1038/srep32241. ISSN 2045-2322. PMC 5007514. PMID 27582299.
  8. ^ a b Shen, Li-Dong; He, Zhan-Fei; Zhu, Qun; Chen, Dong-Qing; Lou, Li-Ping; Xu, Xiang-Yang; Zheng, Ping; Hu, Bao-Lan (2012). "Microbiology, ecology, and application of the nitrite-dependent anaerobic methane oxidation process". Frontiers in Microbiology. 3: 269. doi:10.3389/fmicb.2012.00269. ISSN 1664-302X. PMC 3408237. PMID 22905032.
  9. ^ Luesken, Francisca A.; van Alen, Theo A.; van der Biezen, Erwin; Frijters, Carla; Toonen, Ger; Kampman, Christel; Hendrickx, Tim L. G.; Zeeman, Grietje; Temmink, Hardy; Strous, Marc; Op den Camp, Huub J. M. (November 2011). "Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge". Applied Microbiology and Biotechnology. 92 (4): 845–854. doi:10.1007/s00253-011-3361-9. ISSN 0175-7598. PMC 3198195. PMID 21667086.