Programmable photonics

From Wikipedia, the free encyclopedia

Programmable photonics is a subfield of photonics that studies the development of photonic circuits for computation. It encompasses passive computation, which sculpts light in a way that performs a certain computation,[1] and the more ambitious, futuristic active computation (like in semiconductors).[2]

Programmable photonics has received increasing interest from the defense, virtual reality, and augmented reality sectors, among others.[3][4][5]

Optical metasurfaces (OMs) are widely considered the current state of the art in passive programmable photonics,[6] making the pragmatic decision of sticking to a 2D layer due to the difficulty of fabricating nanoscale 3D structures.[7] Significant research effort is devoted to fabricating nanoscale, complex 3D structures more efficiently and precisely.[8][9]

References[edit]

  1. ^ Preble, Stefan; Bergman, Barton; Carpenter, Lewis G.; Chrostowski, Lukas; Dikshit, Amit; Fanto, Michael; Lin, Wenhua; van Niekerk, Matthew; Uddin, Mohammad Rakib; Sundaram, Vijay Soorya Shunmuga (1 January 2023). "Passive silicon photonic devices". Integrated Photonics for Data Communication Applications. Integrated Photonics Apps Specific Design & Manufacturing. Elsevier: 159–199. doi:10.1016/B978-0-323-91224-2.00001-1. ISBN 9780323912242.
  2. ^ "Active Photonic Platforms (APP) 2024, Conference Details". spie.org.
  3. ^ "Military optical computing uses fast optical interconnects for small size, light weight, and RFI immunity". Military Aerospace. 30 March 2011.
  4. ^ "Meta-optics: The disruptive technology you didn't see coming". ARC Centre of Excellence for Transformative Meta-Optical. phys.org.
  5. ^ "A metalens for virtual and augmented reality". 21 January 2021.
  6. ^ Neshev, Dragomir; Aharonovich, Igor (29 August 2018). "Optical metasurfaces: new generation building blocks for multi-functional optics". Light: Science & Applications. 7 (1): 58. Bibcode:2018LSA.....7...58N. doi:10.1038/s41377-018-0058-1. ISSN 2047-7538. PMC 6113330. PMID 30839584.
  7. ^ Hu, Jie; Bandyopadhyay, Sankhyabrata; Liu, Yu-hui; Shao, Li-yang (2021). "A Review on Metasurface: From Principle to Smart Metadevices". Frontiers in Physics. 8: 502. Bibcode:2021FrP.....8..502H. doi:10.3389/fphy.2020.586087. ISSN 2296-424X.
  8. ^ Ouyang, Wenqi; Xu, Xiayi; Lu, Wanping; Zhao, Ni; Han, Fei; Chen, Shih-Chi (27 March 2023). "Ultrafast 3D nanofabrication via digital holography". Nature Communications. 14 (1): 1716. Bibcode:2023NatCo..14.1716O. doi:10.1038/s41467-023-37163-y. ISSN 2041-1723. PMC 10043265. PMID 36973254.
  9. ^ Oran, Daniel; Rodriques, Samuel G.; Gao, Ruixuan; Asano, Shoh; Skylar-Scott, Mark A.; Chen, Fei; Tillberg, Paul W.; Marblestone, Adam H.; Boyden, Edward S. (14 December 2018). "3D nanofabrication by volumetric deposition and controlled shrinkage of patterned scaffolds". Science. 362 (6420): 1281–1285. Bibcode:2018Sci...362.1281O. doi:10.1126/science.aau5119. ISSN 0036-8075. PMC 6423357. PMID 30545883.