SENP1

From Wikipedia, the free encyclopedia
SENP1
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesSENP1, SuPr-2, SUMO1/sentrin specific peptidase 1, SUMO specific peptidase 1
External IDsOMIM: 612157 MGI: 2445054 HomoloGene: 8731 GeneCards: SENP1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001267594
NM_001267595
NM_014554

NM_144851
NM_001379573

RefSeq (protein)

NP_001254523
NP_001254524

NP_659100
NP_001366502

Location (UCSC)Chr 12: 48.04 – 48.11 MbChr 15: 97.94 – 97.99 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Sentrin-specific protease 1 is an enzyme that in humans is encoded by the SENP1 gene.[5][6][7]

General[edit]

So far there are six SUMO proteases in humans that have been designated SENP1-3 and SENP5-7 (sentrin/SUMO-specific protease).1 The six proteases possess a conserved C-terminal domain which are variable in size, and with a distinct N-terminal domain between them. The C-terminal domain shows catalytic activity and N-terminal domain regulates cell localization and substrate specificity.[8]

Features[edit]

SENP1 (Sentrin-specific protease 1) is a human protease of 643 amino acids with a weight of 73 kDa, EC number in humans 3.4.22.B70, which adopts a conformation that identifies it as a member of the superfamily of cysteine proteases contain a catalytic triad with characterized three amino acids: a cysteine at position 603, a histidine at position 533 and aspartic acid at position 550. The important nucleophile is cysteine located at the N-terminal alpha helix of the protein core, the other two amino acids, aspartate and histidine, are located in a beta sheet end. [9]

SENP1 The catalytic site consists of three amino acids: Cys 602, His 533 and Asp 550.

Location[edit]

Both SENP1 are located in the nucleus and cytosol depending on the cell type, although it has been seen that is exported out from the nucleus to the cytosol through a sequence of nuclear export (NES) that is located at the C-terminus. The mammalian SENP1 is localized mainly in the nucleus.[10]

Function[edit]

SENP1 catalyzes maturation SUMO protein (small ubiquitin-related modifier), which causes hydrolysis peptide bond of SUMO is in a conserved sequence Gly-Gly-|-Ala-Thr-Tyr at the C-terminal [11] to be added to the conjugation of other proteins (sumoylation).[12] In vertebrates there are three members of the family of SUMO: SUMO-1, -2 and -3. SENP1 can catalyze any of these three. This conjugation of SUMO toward other proteins is a lot like ubiquitination, however these modifications leads to different results depending on the type of protein been modified.[13]

References[edit]

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000079387Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000033075Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Gong L, Millas S, Maul GG, Yeh ET (Feb 2000). "Differential regulation of sentrinized proteins by a novel sentrin-specific protease". The Journal of Biological Chemistry. 275 (5): 3355–9. doi:10.1074/jbc.275.5.3355. PMID 10652325.
  6. ^ Bailey D, O'Hare P (Jan 2004). "Characterization of the localization and proteolytic activity of the SUMO-specific protease, SENP1". The Journal of Biological Chemistry. 279 (1): 692–703. doi:10.1074/jbc.M306195200. PMID 14563852.
  7. ^ "Entrez Gene: SENP1 SUMO1/sentrin specific peptidase 1".
  8. ^ Xu Z, Chau SF, Lam KH, Chan HY, Ng TB, Au SW (Sep 2006). "Crystal structure of the SENP1 mutant C603S-SUMO complex reveals the hydrolytic mechanism of SUMO-specific protease". The Biochemical Journal. 398 (3): 345–52. doi:10.1042/BJ20060526. PMC 1559472. PMID 16712526.
  9. ^ Shen LN, Dong C, Liu H, Naismith JH, Hay RT (2006). "The structure of SENP1-SUMO-2 complex suggests a structural basis for discrimination between SUMO paralogues during processing". The Biochemical Journal. 397 (2): 279–288. doi:10.1042/BJ20052030. PMC 1513277. PMID 16553580.
  10. ^ Kim YH, Sung KS, Lee SJ, Kim YO, Choi CY, Kim Y (2005). "Desumoylation of homeodomain-interacting protein kinase 2 (HIPK2) through the cytoplasmic-nuclear shuttling of the SUMO-specific protease SENP1". FEBS Letters. 579 (27): 6272–6278. doi:10.1016/j.febslet.2005.10.010. PMID 16253240. S2CID 13388952.
  11. ^ "SENP1 - Sentrin-specific protease 1 - Homo sapiens (Human) - SENP1 gene & protein".
  12. ^ Xu Z, Au SW (2005). "Mapping residues of SUMO precursors essential in differential maturation by SUMO-specific protease, SENP1". The Biochemical Journal. 386 (Pt 2): 325–330. doi:10.1042/BJ20041210. PMC 1134797. PMID 15487983.
  13. ^ Xu Z, Chau SF, Lam KH, Chan HY, Ng TB, Au SW (2006). "Crystal structure of the SENP1 mutant C603S-SUMO complex reveals the hydrolytic mechanism of SUMO-specific protease". The Biochemical Journal. 398 (3): 345–52. doi:10.1042/BJ20060526. PMC 1559472. PMID 16712526.

Further reading[edit]

External links[edit]

  • Overview of all the structural information available in the PDB for UniProt: Q9P0U3 (Sentrin-specific protease 1) at the PDBe-KB.