Talk:Optical fiber/59.161.83.214

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

Numerical Aperture[edit]

Defines the maximum acceptance angle to admit and transmit light by a fiber. Lenses can be used to focus light at the input and/or output end. The figure on the right depicts a section of a clad cylindrical fiber showing the core with refractive index of N1 and the clad with index of N2. Also shown is a light ray entering the end of the fiber at angle (A), reflecting from the interface down the fiber. However, if angle A becomes too great, the light will not reflect at the interface, but will go out the side of the fiber and be lost. This angle, beyond which light cannot be carried in a fiber, is called the CRITICAL ANGLE and may be calculated from the two indices of refraction.

To calculate the Critical Angle, first determine the N.A. (Numerical Aperture).The N.A. of any glass combination may be calculated as follows: (where N1= the index of refraction of the core glass), and N2=(the index of refraction of the cladding glass):

For example, taking 1.62 for N1 and 1.52 for N2 , we find the NA to be .56. By calculating the arc sine (sin-1) of .56 ( 34 degrees) we determine THE CRITICAL ANGLE.

As this fiber accepts light up to 34 degrees off axis in any direction, we define the ACCEPTANCE ANGLE of the fiber as twice the critical angle or in this case, 68 degrees.

Of course, if you'd like to use the related calculator, Click Here. If you already know the N.A and just need to know the acceptance angle, Click Here.

For your further information, the F/ NUMBER EQUIVALENT of the N.A. is calculated as follows:


The Numerical Aperture is an important parameter of any optical fiber, but one which is frequently misunderstood and overemphasized. In the first illustration above, notice that angle A is shown at both the entrance and exit ends of the fiber. This is because the fiber tends to preserve the angle of incidence during propagation of the light, causing it to exit the fiber at the same angle it entered. Now look at the figure below, which is a drawing of a typical light guide being illuminated by a projector type lamp.


Angle A (29 degrees) is the acceptance angle of a N.A. .25 fiber. Angle B (45 degrees) is the incident angle from the bulb. Angle C (83 degrees) is the acceptance angle of a N.A. .66 fiber.


Calculating the N.A. for the 45 degree angle (B) of incidence yields .38 (sin(45/2)). Therefore, fiber with an N.A. of .66 will accept all of the light from the bulb, but the output cone at the other end will be 45 degrees, not the 83 degrees that you might expect. Conversely, the N.A. .25 fiber is not capable of accepting all the light from the bulb. Any light transmitted through this fiber will create an output cone of 29 degrees.

Many people believe that using a low N.A. fiber will "focus" the light from a wider N.A. source. This is not true. As you see, the lower N.A. fiber simply has a lower acceptance angle. While the resulting output will be projected into a tighter area, the overall light transmitted is less than what might be transmitted through a higher N.A. fiber. To focus light from a source, a lens assembly must be used to gather all available light and change the incident angle (and resulting N.A.) to match, (or be less than) the N.A. of the fiber being used.


Many people believe that using a low N.A. fiber will "focus" the light from a source. This is not true. A narrow N.A. fiber simply admits less light than a wider N.A. fiber, assuming the source is emitting light at a wide N.A..


Advantages[edit]

1.Noise immunity: RFI and EMI immune (RFI - Radio Frequency Interference, EMI -Electromagnetic Interference) 2.Security: cannot tap into cable. 3.Large Capacity due to BW (bandwidth) 4.No corrosion 5.Longer distances than copper wire 6.Smaller and lighter than copper wire 7.Faster transmission rate

Disadvantages[edit]

1.Light pulses spread out in length as they propagate(chromatic dispersion). 2.Cannot carry electrical power to operate end devices. 3.High optical power can destroy the cable,known as fiber fuse. 4.Optical transmitters and receivers are too expensive. 5.Physical vibration will show up as signal noise! 6.Limited physical arc of cable. Bend it too much and it will break! 7.Difficult to splice The cost of optical fiber is a trade-off between capacity and cost. At higher transmission capacity, it is cheaper than copper. At lower transmission capacity, it is more expensive.