User:inarus2/L7 pre mirna

From Wikipedia, the free encyclopedia
let-7 microRNA precursor
Identifiers
Symbollet-7
RfamRF00027
miRBaseMI0000001
miRBase familyMIPF0000002
Other data
RNA typeGene; miRNA
Domain(s)Eukaryota
GOGO:0035195 GO:0035068
SOSO:0001244
PDB structuresPDBe

The Let-7 microRNA precursor was identified from a study of developmental timing in C. elegans,[1] and was later shown to be part of a much larger class of non-coding RNAs termed microRNAs.[2] miR-98 microRNA precursor from human is a let-7 family member. Let-7 miRNAs have now been predicted or experimentally confirmed in a wide range of species (MIPF000002). miRNAs are initially transcribed in long transcripts (up to several hundred nucleotides) called primary miRNAs (pri-miRNAs), which are processed in the nucleus by Drosha and Pasha to hairpin structures of about ~70 nucleotide. These precursors (pre-miRNAs) are exported to the cytoplasm by exportin5, where they are subsequently processed by the enzyme Dicer to a ~22 nucleotide mature miRNA. The involvement of Dicer in miRNA processing demonstrates a relationship with the phenomenon of RNA interference.

Genomic Locations[edit]

In human genome, the cluster let-7a-1/let-7f-1/let-7d is inside the region B at 9q22.3, with the defining marker D9S280-D9S1809. One minimal LOH (loss of heterozygosity) region, between loci D11S1345-D11S1316, contains the cluster miR-125b1/let-7a-2/miR-100. The cluster miR-99a/let-7c/miR-125b-2 is in a 21p11.1 region of HD (homozygous deletions). The cluster let-7g/miR-135-1 is in region 3 at 3p21.1-p21.2.[3]

The let-7 family[edit]

The lethal-7 (let-7) gene was first discovered in the nematode as a key developmental regulator and became one of the first two known microRNAs (the other one is lin-4).[4] Soon, let-7 was found in fruit fly, and identified as the first known human miRNA by a BLAST (basic local alignment search tool) research.[5] The mature form of let-7 family members is highly conserved across species.

In C.elegans[edit]

In C.elegans, the let-7 family consists of genes encoding nine miRNAs sharing the same seed sequence.[6] Among them, let-7, mir-84, mir-48 and mir-241 are involved in C.elegans heterochronic pathway, sequentially controlling developmental timing of larva transitions.[7] Most animals with loss-of-function let-7 mutation burst through their vulvas and die, and therefore the mutant is lethal (let).[4] The mutants of other let-7 family members have a radio-resistant phenotype in vulval cells, which may be related to their ability to repress RAS.[8]

In Drosophila[edit]

There is only one single let-7 gene in the Drosophila genome, which has the identical mature sequence to the one in C.elegans.[9] The role of let-7 has been demonstrated in regulating the timing of neuromuscular junction formation in the abdomen and cell-cycle in the wing.[10] Furthermore, the expression of pri-, pre- and mature let-7 have the same rhythmic pattern with the hormone pulse before each cuticular molt in Drosophila.[11]

In vertebrates[edit]

The let-7 family has a lot more members in vertebrates than in C.elegans and Drosophila.[9] And the sequences, expression timing, as well as genomic clustering of these miRNAs members are all conserved across species.[12] The direct role of let-7 family in vertebrate development has not been clearly shown as in less complex organisms, yet the expression pattern of let-7 family is indeed temporal during developmental processes.[13] Given that the expression levels of let-7 members are significantly low in human cancers and cancer stem cells,[14] the major function of let-7 genes may be to promote terminal differentiation in development and tumor suppression.

Regulation of expression[edit]

Although the levels of mature let-7 members are undetectable in undifferentiated cells, the primary transcripts and the hairpin precursors of let-7 are present in these cells.[15] It indicates that the mature let-7 miRNAs may be regulated in a post-transcriptional manner.

By pluripotency promoting factor LIN28[edit]

As one of the four genes involved in induced pluripotent stem (iPS) cells reprogramming,[16] LIN28 expression is reciprocal to that of mature let-7.[17] LIN28 selectively binds the primary and precursor forms of let-7, and inhibits the processing of pri-let-7 to form the hairpin precursor.[18] This binding is facilitated by the conserved loop sequence of primary let-7 family members and RNA-binding domains of LIN28 proteins.[19] On the other hand, let-7 miRNAs in mammals have been shown to regulate LIN28,[20] which implies that let-7 might enhance its own level by repressing LIN28, its negative regulator.

In autoregulatory loop with MYC[edit]

Expression of let-7 members is controlled by MYC binding to their promoters. The levels of let-7 have been reported to decrease in models of MYC-mediated tumorigenesis, and to increase when MYC is inhibited by chemicals.[21] In a twist, there are let-7-binding sites in MYC 3' untranslated region(UTR) according to bioinformatic analysis, and let-7 overexpression in cell culture decreased MYC mRNA levels.[22] Therefore, there is a double-negative feedback loop between MYC and let-7. Furthermore, let-7 could lead to IMP1(/insulin-like growth factor II mRNA-binding protein) depletion, which destabilizes MYC mRNA, thus forming an indirect regulatory pathway.[23]

Targets of let-7[edit]

Oncogenes: RAS, HMGA2[edit]

Let-7 has been demonstrated to be a direct regulator of RAS expression in human cells[24] All the three RAS genes in human, K-, N-, and H-, have the predicted let-7 binding sequences in their 3'UTRs. In lung cancer patient samples, expression of RAS and let-7 showed reciprocal pattern, which has low let-7 and high RAS in cancerous cells, and high let-7 and low RAS in normal cells. Another oncogene, high mobility group A2 (HMGA2), has also been identified as a target of let-7. Let-7 directly inhibits HMGA2 by binding to its 3'UTR.[25] Removal of let-7 binding site by 3'UTR deletion cause overexpression of HMGA2 and formation of tumor. MYC is also considered as a oncogenic target of let-7.

Cell cycle, proliferation, and apoptosis regulators[edit]

Microarray analyses revealed many genes regulating cell cycle and cell proliferation that are responsive to alteration of let-7 levels, including cyclin A2, CDC34, Aurora A and B kinases (STK6 and STK12), E2F5, and CDK8, among others.[26] Subsequent experiments confirmed the direct effects of some of these genes, such as CDC25A and CDK6.[27] Let-7 also inhibits several components of DNA replication machinery, transcription factors, even some tumor suppressor genes and checkpoint regulators.[26] Apoptosis is regulated by let-7 as well, through Casp3, Bcl2, Map3k1 and Cdk5 modulation.[28]

Immunity[edit]

Let-7 has been implicated in post-transcriptional control of innate immune responses to pathogenic agents. Macrophages stimulated with live bacteria or purified microbial components down-regulate the expression of several members of the let-7 microRNA family to relieve repression of immune-modulatory cytokines IL-6 and IL-10.[29] [30] Let-7 has also been implicated in the negative regulation of TLR4, the major immune receptor of microbial lipopolysaccharide and down-regulation of let-7 both upon microbial and protozoan infection might elevate TLR4 signalling and expression.[31] [32] Let-7 has furthermore been reported to regulate the production of cytokine IL-13 by T lymphocytes during allergic airway inflammation thus linking this microRNA to adaptive immunity as well.[33] Down-modulation of let-7 negative regulator Lin28b in human T lymphocytes is believed to accure during early neonate development to reprogramm the immune system towards defense.[34]

Potential clinical use in cancer[edit]

Given the prominent phenotype of cell overproliferation and undifferentiation by let-7 loss-of-function in nematodes, and the role of its targets on cell destiny determination, let-7 is closely associated with human cancer and acts as a tumor suppressor.

Diagnosis[edit]

Numerous reports have shown that the expression levels of let-7 are frequently low and the chromosomal clusters of let-7 are often deleted in many cancers.[3] Let-7 is expressed at higher levels in more differentiated tumors, which also have lower levels of activated oncogenes such as RAS and HMGA2. Therefore, expression levels of let-7 could be prognostic markers in several cancers associated with differentiation stages.[35] In lung cancer, for example, reduced expression of let-7 is significantly correlated with reduced postoperative survival.[36]

Therapy[edit]

Let-7 is also a very attractive potential therapeutic that can prevent tumorigenesis and angiogenesis, typically in cancers that underexpress let-7.[37] Lung cancer, for instance, have several key oncogenic mutations including p53, RAS and MYC, part of which may directly correlates with the reduced expression of let-7, and may be repressed by introduction of let-7.[36] Intranasal administration of let-7 has already be found effective in reducing tumor growth in a transgenic mouse model of lung cancer.[38] Similar restoration of let-7 was also shown to inhibit cell proliferation in breast, colon and hepatic cancers, lymphoma, and uterine leiomyoma.[39]

References[edit]

  1. ^ Rougvie, AE (2001). "Control of developmental timing in animals". Nat Rev Genet. 2 (9): 690–701. doi:10.1038/35088566. PMID 11533718.
  2. ^ Ambros, V (2001). "microRNAs: tiny regulators with great potential". Cell. 107 (7): 823–826. doi:10.1016/S0092-8674(01)00616-X. PMID 11779458.
  3. ^ a b Calin; Sevignani, C; Dumitru, CD; Hyslop, T; Noch, E; Yendamuri, S; Shimizu, M; Rattan, S; Bullrich, F (2003). "Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers". PNAS. 101 (9): 2999–3004. Bibcode:2004PNAS..101.2999C. doi:10.1073/pnas.0307323101. PMC 365734. PMID 14973191.
  4. ^ a b Reinhart B.J.; et al. (2000). "The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans". Nature. 403 (6772): 901–906. Bibcode:2000Natur.403..901R. doi:10.1038/35002607. PMID 10706289. {{cite journal}}: Explicit use of et al. in: |author= (help)
  5. ^ Pasquinelli A.E.; et al. (2000). "Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA". Nature. 408 (6808): 86–89. doi:10.1038/35040556. PMID 11081512. {{cite journal}}: Explicit use of et al. in: |author= (help)
  6. ^ Lim L.P.; et al. (2003). "The microRNAs of Caenorhabditis elegans". Genes Dev. 17: 991–1008. {{cite journal}}: Explicit use of et al. in: |author= (help)
  7. ^ Moss, E.G. (2007) Heterochronic genes and the nature of developmental time" Curr. Biol 17: R425–R434.
  8. ^ Weidhaas J.B.; et al. (2007). "MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy". Cancer Res. 67 (23): 11111–11116. doi:10.1158/0008-5472.CAN-07-2858. PMID 18056433. {{cite journal}}: Explicit use of et al. in: |author= (help)
  9. ^ a b Lagos-Quintana M.; et al. (2001). "Identification of novel genes coding for small expressed RNAs". Science. 294 (5543): 853–858. Bibcode:2001Sci...294..853L. doi:10.1126/science.1064921. PMID 11679670. {{cite journal}}: Explicit use of et al. in: |author= (help)
  10. ^ Caygill E.E., Johnston L.A. (2008). "Temporal Regulation of Metamorphic Processes in Drosophila by the let-7 and miR-125 Heterochronic MicroRNAs". Curr. Biol. 18 (13): 943–950. doi:10.1016/j.cub.2008.06.020. PMC 2736146. PMID 18571409.
  11. ^ Thummel C.S. (2001). "Molecular mechanisms of developmental timing in C. elegans and Drosophila". Dev. Cell. 1 (4): 453–465. doi:10.1016/S1534-5807(01)00060-0. PMID 11703937.
  12. ^ Rodriguez A.; et al. (2004). "Identification of Mammalian microRNA Host Genes and Transcription Units". Genome Res. 14 (10A): 1902–1910. doi:10.1101/gr.2722704. PMC 524413. PMID 15364901. {{cite journal}}: Explicit use of et al. in: |author= (help)
  13. ^ Kloosterman W.P., Plasterk R.H. (2006). "The diverse functions of microRNAs in animal development and disease". Dev. Cell. 11 (4): 441–450. doi:10.1016/j.devcel.2006.09.009. PMID 17011485.
  14. ^ Esquela-Kerscher A., Slack F.J. (2006). "Oncomirs - microRNAs with a role in cancer". Nat. Rev. Cancer. 6 (4): 259–269. doi:10.1038/nrc1840. PMID 16557279.
  15. ^ Thomson J.M.; et al. (2006). "Extensive post-transcriptional regulation of microRNAs and its implications for cancer". Genes Dev. 20 (16): 2202–2207. doi:10.1101/gad.1444406. PMC 1553203. PMID 16882971. {{cite journal}}: Explicit use of et al. in: |author= (help)
  16. ^ Yu J.; et al. (2007). "Induced pluripotent stem cell lines derived from human somatic cells". Science. 318 (5858): 1917–1920. Bibcode:2007Sci...318.1917Y. doi:10.1126/science.1151526. PMID 18029452. {{cite journal}}: Explicit use of et al. in: |author= (help)
  17. ^ Viswanathan S.R.; et al. (2008). "Selective blockade of microRNA processing by Lin-28". Science. 320 (5872): 97–100. Bibcode:2008Sci...320...97V. doi:10.1126/science.1154040. PMID 18292307. {{cite journal}}: Explicit use of et al. in: |author= (help)
  18. ^ Newman, M.A. et al. (2008) Lin-28 interaction with the let-7 precursor loop mediates regulated microRNA processing. RNA, doi:10.1261/rna.1155108.
  19. ^ Piskounova, E. et al. (2008) Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. J. Biol. Chem., doi:10.1074/jbc.C800108200.
  20. ^ Moss E.G., Tang L. (2003). "Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites". Dev. Biol. 258 (2): 432–442. doi:10.1016/S0012-1606(03)00126-X. PMID 12798299.
  21. ^ Chang T.C.; et al. (2007). "Widespread microRNA repression by Myc contributes to tumorigenesis". Nat. Genet. 40 (1): 43–50. doi:10.1038/ng.2007.30. PMC 2628762. PMID 18066065. {{cite journal}}: Explicit use of et al. in: |author= (help)
  22. ^ Koscianska E.; et al. (2007). "Prediction and preliminary validation of oncogene regulation by miRNAs". BMC Mol. Biol. 8: 79. doi:10.1186/1471-2199-8-79. PMC 2096627. PMID 17877811. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: unflagged free DOI (link)
  23. ^ Ioannidis P.; et al. (2005). "CRD-BP/IMP1 expression characterizes cord blood CD34+ stem cells and affects c-myc and IGF-II expression in MCF-7 cancer cells". J. Biol. Chem. 280 (20): 20086–20093. doi:10.1074/jbc.M410036200. PMID 15769738. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: unflagged free DOI (link)
  24. ^ Johnson S.M.; et al. (2005). "RAS is regulated by the let-7 microRNA family". Cell. 120 (5): 635–647. doi:10.1016/j.cell.2005.01.014. PMID 15766527. {{cite journal}}: Explicit use of et al. in: |author= (help)
  25. ^ Mayr C.; et al. (2007). "Disrupting the Pairing Between let-7 and Hmga2 Enhances Oncogenic Transformation". Science. 315 (5818): 1576–1579. Bibcode:2007Sci...315.1576M. doi:10.1126/science.1137999. PMC 2556962. PMID 17322030. {{cite journal}}: Explicit use of et al. in: |author= (help)
  26. ^ a b Johnson SM, Grosshans H, Shingara J; et al. (2005). "Ras is regulated by the let-7 microrna family". Cell. 120 (5): 635–47. doi:10.1016/j.cell.2005.01.014. PMID 15766527. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  27. ^ Johnson C.D.; et al. (2007). "The let-7 microRNA represses cell proliferation pathways in human cells". Cancer Res. 67 (16): 7713–7722. doi:10.1158/0008-5472.CAN-07-1083. PMID 17699775. {{cite journal}}: Explicit use of et al. in: |author= (help)
  28. ^ He YJ, Guo L, D ZH. (2009) Let-7 and mir-24 in uvb-induced apoptosis [Chinese]. Zhonghua Fang She Yi Xue Yu Fang Hu Za Zhi. 29, 234–6.
  29. ^ Schulte LN; et al. (2011). "Analysis of the host miRNA response to Salmonella uncovers the control of major cytokines by the let-7 family". The Embo Journal. 30: 1977–1989. doi:10.1038/emboj.2011.94. {{cite journal}}: Explicit use of et al. in: |author= (help)
  30. ^ Liu Y; et al. (2011). "MicroRNA-98 negatively regulates IL-10 production and endotoxin tolerance in macrophages after LPS stimulation". FEBS Letters. 585 (12): 1963–1968. doi:10.1016/j.febslet.2011.05.029. {{cite journal}}: Explicit use of et al. in: |author= (help)
  31. ^ Hu G; et al. (2009). "MicroRNA-98 and let-7 Confer Cholangiocyte Expression of Cytokine-Inducible Src Homology 2-Containing Protein in Response to Microbial Challenge". The Journal of Immunology. 183 (3): 1617–1624. doi:10.4049/​jimmunol.0804362. {{cite journal}}: Explicit use of et al. in: |author= (help); zero width space character in |doi= at position 9 (help)
  32. ^ Androulidaki A; et al. (2009). "Akt1 controls macrophage response to LPS by regulating microRNAs". Immunity. 31 (2): 220–231. doi:10.1016/j.immuni.2009.06.024. {{cite journal}}: Explicit use of et al. in: |author= (help)
  33. ^ Kumar M; et al. (2011). "Let-7 microRNA-mediated regulation of IL-13 and allergic airway inflammation". Journal of Allergy and Clinical Immunology. 128 (5): 1077–1085. doi:10.1016/j.jaci.2011.04.034. {{cite journal}}: Explicit use of et al. in: |author= (help)
  34. ^ Yuan J; et al. (2012). "Lin28b Reprograms Adult Bone Marrow Hematopoietic Progenitors to Mediate Fetal-Like Lymphopoiesis". Science. 335 (6073): 1195–12000. Bibcode:2012Sci...335.1195Y. doi:10.1126/science.1216557. {{cite journal}}: Explicit use of et al. in: |author= (help)
  35. ^ Shell S, Park SM, Radjabi AR; et al. (2007). "Let-7 expression defines two differentiation stages of cancer". Proc Natl Acad Sci U S A. 104 (27): 11400–5. Bibcode:2007PNAS..10411400S. doi:10.1073/pnas.0704372104. PMC 2040910. PMID 17600087. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  36. ^ a b Takamizawa J, Konishi H, Yanagisawa K; et al. (2004). "Reduced expression of the let-7 micrornas in human lung cancers in association with shortened postoperative survival". Cancer Res. 64 (11): 3753–6. doi:10.1158/0008-5472.CAN-04-0637. PMID 15172979. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  37. ^ Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S (2007). "Role of Dicer and Drosha for endothelial microrna expression and angiogenesis". Circ Res. 101 (1): 59–68. doi:10.1161/CIRCRESAHA.107.153916. PMID 17540974.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  38. ^ Esquela , Kerscher A, Trang P, Wiggins JF; et al. (2008). "The let-7 microrna reduces tumor growth in mouse models of lung cancer". Cell Cycle. 7 (6): 759–64. doi:10.4161/cc.7.6.5834. PMID 18344688. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  39. ^ Barh D., Malhotra R., Ravi B., and Sindhurani P. (2010). MicroRNA let-7: an emerging next-generation cancer therapeutic. CURRENT ONCOLOGY. 17, 70-80.

Further reading[edit]

  1. ^ Dangi-Garimella S, Strouch MJ, Grippo PJ, Bentrem DJ, Munshi HG (2010). "Collagen regulation of let-7 in pancreatic cancer involves TGF-β1-mediated membrane type 1-matrix metalloproteinase expression". Oncogene. 30 (8): 1002–1008. doi:10.1038/onc.2010.485. PMC 3172057. PMID 21057545.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. ^ Yang X, Lin X, Zhong X, Kaur S, Li N, Liang S, Lassus H, Wang L, Katsaros D, Montone K, Zhao X, Zhang Y, Bützow R, Coukos G, Zhang L (2010). "Double negative feedback loop between reprogramming factor LIN28 and microRNA let-7 regulates aldehyde dehydrogenase 1-positive cancer stem cells". Cancer Res. 70 (22): 9463–9472. doi:10.1158/0008-5472.CAN-10-2388. PMC 3057570. PMID 21045151.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. ^ Ohshima K, Inoue K, Fujiwara A, Hatakeyama K, Kanto K, Watanabe Y, Muramatsu K, Fukuda Y, Ogura S, Yamaguchi K, Mochizuki T (2010). Wölfl, Stefan (ed.). "Let-7 MicroRNA Family Is Selectively Secreted into the Extracellular Environment via Exosomes in a Metastatic Gastric Cancer Cell Line". PLoS ONE. 5 (10): e13247. doi:10.1371/journal.pone.0013247. PMC 2951912. PMID 20949044.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  4. ^ Ramachandran R, Fausett BV, Goldman D (2010). "Ascl1a regulates Müller glia dedifferentiation and retina regeneration via a Lin-28-dependent, let-7 miRNA signaling pathway". Nat Cell Biol. 12 (11): 1101–7. doi:10.1038/ncb2115. PMC 2972404. PMID 20935637.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. ^ Ruzzo A, Canestrari E, Galluccio N, Santini D, Vincenzi B, Tonini G, Magnani M, Graziano F (2010). "Role of KRAS let-7 LCS6 SNP in metastatic colorectal cancer patients". Ann Oncol. 22 (1): 234–5. doi:10.1093/annonc/mdq472. PMID 20926546.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ Garbuzov A, Tatar M (2010). "Hormonal regulation of Drosophila microRNA let-7 and miR-125 that target innate immunity". Fly (Austin). 4 (4): 306–11. doi:10.4161/fly.4.4.13008. PMC 3174482. PMID 20798594.
  7. ^ Ji J, Wang XW (2010). "A Yin-Yang Balancing Act of the Lin28/Let-7 Link in Tumorigenesis". J Hepatol. 53 (5): 974–5. doi:10.1016/j.jhep.2010.07.001. PMC 2949515. PMID 20739081.
  8. ^ Osada H, Takahashi T (2010). "Review Article: let-7 and miR-17-92: Small-sized major players in lung cancer development". Cancer Sci. 102 (1): 9–17. doi:10.1111/j.1349-7006.2010.01707.x. PMID 20735434.
  9. ^ He Y, Yang C, Kirkmire CM, Wang ZJ (2010). "Regulation of opioid tolerance by let-7 family microRNA targeting the μ opioid receptor". J Neurosci. 30 (30): 10251–8. doi:10.1523/JNEUROSCI.2419-10.2010. PMC 2943348. PMID 20668208.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. ^ Cevec M, Thibaudeau C, Plavec J (2010). "NMR structure of the let-7 miRNA interacting with the site LCS1 of lin-41 mRNA from Caenorhabditis elegans". Nucleic Acids Res. 38 (21): 7814–21. doi:10.1093/nar/gkq640. PMC 2995062. PMID 20660479.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. ^ Nie K, Zhang T, Allawi H, Gomez M, Liu Y, Chadburn A, Wang YL, Knowles DM, Tam W (2010). "Epigenetic Down-Regulation of the Tumor Suppressor Gene PRDM1/Blimp-1 in Diffuse Large B Cell Lymphomas : A Potential Role of the MicroRNA Let-7". Am J Pathol. 177 (3): 1470–9. doi:10.2353/ajpath.2010.091291. PMC 2928978. PMID 20651244.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. ^ Polikepahad S, Knight JM, Naghavi AO, Oplt T, Creighton CJ, Shaw C, Benham AL, Kim J, Soibam B, Harris RA, Coarfa C, Zariff A, Milosavljevic A, Batts LM, Kheradmand F, Gunaratne PH, Corry DB (2010). "Proinflammatory Role for let-7 MicroRNAS in Experimental Asthma". J Biol Chem. 285 (39): 30139–49. doi:10.1074/jbc.M110.145698. PMC 2943272. PMID 20630862.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  13. ^ Newman MA, Hammond SM (2010). "Lin-28: an early embryonic sentinel that blocks Let-7 biogenesis". Int J Biochem Cell Biol. 42 (8): 1330–3. doi:10.1016/j.biocel.2009.02.023. PMID 20619222.
  14. ^ Lee ST, Chu K, Oh HJ, Im WS, Lim JY, Kim SK, Park CK, Jung KH, Lee SK, Kim M, Roh JK (2010). "Let-7 microRNA inhibits the proliferation of human glioblastoma cells". J Neurooncol. 102 (1): 19–24. doi:10.1007/s11060-010-0286-6. PMID 20607356.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  15. ^ Zhang W, Winder T, Ning Y, Pohl A, Yang D, Kahn M, Lurje G, Labonte MJ, Wilson PM, Gordon MA, Hu-Lieskovan S, Mauro DJ, Langer C, Rowinsky EK, Lenz HJ (2010). "A let-7 microRNA-binding site polymorphism in 3'-untranslated region of KRAS gene predicts response in wild-type KRAS patients with metastatic colorectal cancer treated with cetuximab monotherapy". Ann Oncol. 22 (1): 104–9. doi:10.1093/annonc/mdq315. PMID 20603437.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. ^ Zhao Y, Deng C, Wang J, Xiao J, Gatalica Z, Recker RR, Xiao GG (2010). "Let-7 family miRNAs regulate estrogen receptor alpha signaling in estrogen receptor positive breast cancer". Breast Cancer Res Treat. 127 (1): 69–80. doi:10.1007/s10549-010-0972-2. PMID 20535543.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  17. ^ Hu G, Zhou R, Liu J, Gong AY, Chen XM (2010). "MicroRNA-98 and let-7 Regulate Expression of Suppressor of Cytokine Signaling-4 in Biliary Epithelial Cells in Response to Cryptosporidium parvum Infection". J Infect Dis. 202 (1): 125–35. doi:10.1086/653212. PMC 2880649. PMID 20486857.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  18. ^ Steinemann D, Tauscher M, Praulich I, Niemeyer CM, Flotho C, Schlegelberger B (2010). "Mutations in the let-7 binding site - a mechanism of RAS activation in juvenile myelomonocytic leukemia?". Haematologica. 95 (9): 1616. doi:10.3324/haematol.2010.024984. PMC 2930968. PMID 20460640.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  19. ^ Wong TS, Man OY, Tsang CM, Tsao SW, Tsang RK, Chan JY, Ho WK, Wei WI, To VS (2010). "MicroRNA let-7 suppresses nasopharyngeal carcinoma cells proliferation through downregulating c-Myc expression". J Cancer Res Clin Oncol. 137 (3): 415–422. doi:10.1007/s00432-010-0898-4. PMC 3036828. PMID 20440510.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  20. ^ Shimizu S, Takehara T, Hikita H, Kodama T, Miyagi T, Hosui A, Tatsumi T, Ishida H, Noda T, Nagano H, Doki Y, Mori M, Hayashi N (2010). "The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma". J Hepatol. 52 (5): 698–704. doi:10.1016/j.jhep.2009.12.024. PMID 20347499.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  21. ^ Jakymiw A, Patel RS, Deming N, Bhattacharyya I, Shah P, Lamont RJ, Stewart CM, Cohen DM, Chan EK (2010). "Overexpression of Dicer as a Result of Reduced let-7 microRNA Levels Contributes to Increased Cell Proliferation of Oral Cancer Cells". Genes Chromosomes Cancer. 49 (6): 549–59. doi:10.1002/gcc.20765. PMC 2859695. PMID 20232482.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  22. ^ Koh W, Sheng CT, Tan B, Lee QY, Kuznetsov V, Kiang LS, Tanavde V (2010). "Analysis of deep sequencing microRNA expression profile from human embryonic stem cells derived mesenchymal stem cells reveals possible role of let-7 microRNA family in downstream targeting of Hepatic Nuclear Factor 4 Alpha". BMC Genomics. 11 Suppl 1: S6. doi:10.1186/1471-2164-11-S1-S6. PMC 2822534. PMID 20158877.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  23. ^ Barh D, Malhotra R, Ravi B, Sindhurani P (2010). "Microrna let-7: an emerging next-generation cancer therapeutic". Curr Oncol. 17 (1): 70–80. PMC 2826782. PMID 20179807.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  24. ^ Balzer E, Heine C, Jiang Q, Lee VM, Moss EG (2010). "LIN28 alters cell fate succession and acts independently of the let-7 microRNA during neurogliogenesis in vitro". Development. 137 (6): 891–900. doi:10.1242/dev.042895. PMID 20179095.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  25. ^ Graziano F, Canestrari E, Loupakis F, Ruzzo A, Galluccio N, Santini D, Rocchi M, Vincenzi B, Salvatore L, Cremolini C, Spoto C, Catalano V, D'Emidio S, Giordani P, Tonini G, Falcone A, Magnani M (2010). "Genetic modulation of the Let-7 microRNA binding to KRAS 3'-untranslated region and survival of metastatic colorectal cancer patients treated with salvage cetuximab-irinotecan". Pharmacogenomics J. 10 (5): 458–64. doi:10.1038/tpj.2010.9. PMID 20177422.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  26. ^ Klemke M, Meyer A, Hashemi Nezhad M, Belge G, Bartnitzke S, Bullerdiek J (2010). "Loss of let-7 binding sites resulting from truncations of the 3' untranslated region of HMGA2 mRNA in uterine leiomyomas". Cancer Genet Cytogenet. 196 (2): 119–23. doi:10.1016/j.cancergencyto.2009.09.021. PMID 20082846.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  27. ^ Oh JS, Kim JJ, Byun JY, Kim IA (2010). "Lin28-let7 modulates radiosensitivity of human cancer cells with activation of K-Ras". Int J Radiat Oncol Biol Phys. 76 (1): 5–8. doi:10.1016/j.ijrobp.2009.08.028. PMID 20005451.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  28. ^ Mu G, Liu H, Zhou F, Xu X, Jiang H, Wang Y, Qu Y (2010). "Correlation of overexpression of HMGA1 and HMGA2 with poor tumor differentiation, invasion, and proliferation associated with let-7 down-regulation in retinoblastomas". Hum Pathol. 41 (4): 493–502. doi:10.1016/j.humpath.2009.08.022. PMID 20004941.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  29. ^ Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K, Omotola M, Homer R, Brown D, Bader AG, Weidhaas JB, Slack FJ (2010). "Regression of murine lung tumors by the let-7 microRNA". Oncogene. 29 (11): 1580–7. doi:10.1038/onc.2009.445. PMC 2841713. PMID 19966857.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  30. ^ Ricarte-Filho JC, Fuziwara CS, Yamashita AS, Rezende E, da-Silva MJ, Kimura ET (2009). "Effects of let-7 microRNA on Cell Growth and Differentiation of Papillary Thyroid Cancer". Transl Oncol. 2 (4): 236–41. PMC 2781070. PMID 19956384.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  31. ^ Noh SJ, Miller SH, Lee YT, Goh SH, Marincola FM, Stroncek DF, Reed C, Wang E, Miller JL (2009). "Let-7 microRNAs are developmentally regulated in circulating human erythroid cells". J Transl Med. 7: 98. doi:10.1186/1479-5876-7-98. PMC 2792219. PMID 19939273.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  32. ^ Rybak A, Fuchs H, Hadian K, Smirnova L, Wulczyn EA, Michel G, Nitsch R, Krappmann D, Wulczyn FG (2009). "The let-7 target gene mouse lin-41 is a stem cell specific E3 ubiquitin ligase for the miRNA pathway protein Ago2". Nat Cell Biol. 11 (12): 1411–20. doi:10.1038/ncb1987. PMID 19898466.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  33. ^ Iliopoulos D, Hirsch HA, Struhl K (2009). "An epigenetic switch involving NF-κB, Lin28, let-7 microRNA, and IL6 links inflammation to cell transformation". Cell. 139 (4): 693–706. doi:10.1016/j.cell.2009.10.014. PMC 2783826. PMID 19878981.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  34. ^ Hammell CM, Karp X, Ambros V (2009). "A feedback circuit involving let-7-family miRNAs and DAF-12 integrates environmental signals and developmental timing in Caenorhabditis elegans". Proc Natl Acad Sci U S A. 106 (44): 18668–73. doi:10.1073/pnas.0908131106. PMC 2774035. PMID 19828440.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  35. ^ Boyerinas B, Park SM, Hau A, Murmann AE, Peter ME (2010). "The role of let-7 in cell differentiation and cancer". Endocr Relat Cancer. 17 (1): F19–36. doi:10.1677/ERC-09-0184. PMID 19779035.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  36. ^ Hagan JP, Piskounova E, Gregory RI (2009). "Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in embryonic stem cells". Nat Struct Mol Biol. 16 (10): 1021–5. doi:10.1038/nsmb.1676. PMC 2758923. PMID 19713958.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  37. ^ Lehrbach NJ, Armisen J, Lightfoot HL, Murfitt KJ, Bugaut A, Balasubramanian S, Miska EA (2009). "LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans". Nat Struct Mol Biol. 16 (10): 1016–20. doi:10.1038/nsmb.1675. PMC 2988485. PMID 19713957.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  38. ^ Li Y, VandenBoom TG, Kong D, Wang Z, Ali S, Philip PA, Sarkar FH (2009). "Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells". Cancer Res. 69 (16): 6704–12. doi:10.1158/0008-5472.CAN-09-1298. PMC 2727571. PMID 19654291.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  39. ^ Roush SF, Slack FJ (2009). "Transcription of the C. elegans let-7 microRNA is temporally regulated by one of its targets, hbl-1". Dev Biol. 334 (2): 523–34. doi:10.1016/j.ydbio.2009.07.012. PMC 2753757. PMID 19627983.
  40. ^ Chan SP, Slack FJ (2009). "Ribosomal protein RPS-14 modulates let-7 microRNA function in Caenorhabditis elegans". Dev Biol. 334 (1): 152–60. doi:10.1016/j.ydbio.2009.07.011. PMC 2753218. PMID 19627982.
  41. ^ Shi G, Perle MA, Mittal K, Chen H, Zou X, Narita M, Hernando E, Lee P, Wei JJ (2009). "Let-7 repression leads to HMGA2 overexpression in uterine leiomyosarcoma". J Cell Mol Med. 13 (9B): 3898–905. doi:10.1111/j.1582-4934.2008.00541.x. PMID 19602040.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  42. ^ Hu G, Zhou R, Liu J, Gong AY, Eischeid AN, Dittman JW, Chen XM (2009). "MicroRNA-98 and let-7 Confer Cholangiocyte Expression of Cytokine-Inducible Src Homology 2-Containing Protein in Response to Microbial Challenge,". J Immunol. 183 (3): 1617–24. doi:10.4049/jimmunol.0804362. PMC 2906382. PMID 19592657.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  43. ^ Kim HH, Kuwano Y, Srikantan S, Lee EK, Martindale JL, Gorospe M (2009). "HuR recruits let-7/RISC to repress c-Myc expression". Genes Dev. 23 (15): 1743–8. doi:10.1101/gad.1812509. PMC 2720259. PMID 19574298.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  44. ^ Wang X, Hulshizer RL, Erickson-Johnson MR, Flynn HC, Jenkins RB, Lloyd RV, Oliveira AM (2009). "Identification of novel HMGA2 fusion sequences in lipoma: evidence that deletion of let-7 miRNA consensus binding site 1 in the HMGA2 3' UTR is not critical for HMGA2 transcriptional upregulation". Genes Chromosomes Cancer. 48 (8): 673–8. doi:10.1002/gcc.20674. PMID 19431195.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  45. ^ Christensen BC, Moyer BJ, Avissar M, Ouellet LG, Plaza SL, McClean MD, Marsit CJ, Kelsey KT (2009). "A let-7 microRNA-binding site polymorphism in the KRAS 3′ UTR is associated with reduced survival in oral cancers". Carcinogenesis. 30 (6): 1003–7. doi:10.1093/carcin/bgp099. PMC 2691138. PMID 19380522.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  46. ^ Slack F (2009). "let-7 microRNA reduces tumor growth". Cell Cycle. 8 (12): 1823. PMID 19377282.
  47. ^ Sun T, Fu M, Bookout AL, Kliewer SA, Mangelsdorf DJ (2009). "MicroRNA let-7 Regulates 3T3-L1 Adipogenesis". Mol Endocrinol. 23 (6): 925–31. doi:10.1210/me.2008-0298. PMC 2691679. PMID 19324969.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  48. ^ Torrisani J, Bournet B, du Rieu MC, Bouisson M, Souque A, Escourrou J, Buscail L, Cordelier P (2009). "let-7 MicroRNA transfer in pancreatic cancer-derived cells inhibits in vitro cell proliferation but fails to alter tumor progression". Hum Gene Ther. 20 (8): 831–44. doi:10.1089/hum.2008.134. PMID 19323605.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  49. ^ Peter ME (2009). "Let-7 and miR-200 microRNAs: Guardians against pluripotency and cancer progression". Cell Cycle. 8 (6): 843–52. doi:10.4161/cc.8.6.7907. PMC 2688687. PMID 19221491.
  50. ^ Chang TC, Zeitels LR, Hwang HW, Chivukula RR, Wentzel EA, Dews M, Jung J, Gao P, Dang CV, Beer MA, Thomas-Tikhonenko A, Mendell JT (2009). "Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation". Proc Natl Acad Sci U S A. 106 (9): 3384–9. Bibcode:2009PNAS..106.3384C. doi:10.1073/pnas.0808300106. PMC 2651245. PMID 19211792.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  51. ^ Rahman MM, Qian ZR, Wang EL, Sultana R, Kudo E, Nakasono M, Hayashi T, Kakiuchi S, Sano T (2009). "Frequent overexpression of HMGA1 and 2 in gastroenteropancreatic neuroendocrine tumours and its relationship to let-7 downregulation". Br J Cancer. 100 (3): 501–10. doi:10.1038/sj.bjc.6604883. PMC 2658538. PMID 19156147.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  52. ^ Dangi-Garimella S, Yun J, Eves EM, Newman M, Erkeland SJ, Hammond SM, Minn AJ, Rosner MR (2009). "Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7". EMBO J. 28 (4): 347–58. doi:10.1038/emboj.2008.294. PMC 2646152. PMID 19153603.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  53. ^ Qian ZR, Asa SL, Siomi H, Siomi MC, Yoshimoto K, Yamada S, Wang EL, Rahman MM, Inoue H, Itakura M, Kudo E, Sano T (2009). "Overexpression of HMGA2 relates to reduction of the let-7 and its relationship to clinicopathological features in pituitary adenomas". Mod Pathol. 22 (3): 431–41. doi:10.1038/modpathol.2008.202. PMID 19136928.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  54. ^ Legesse-Miller A, Elemento O, Pfau SJ, Forman JJ, Tavazoie S, Coller HA (2009). "let-7 Overexpression Leads to an Increased Fraction of Cells in G2/M, Direct Down-regulation of Cdc34, and Stabilization of Wee1 Kinase in Primary Fibroblasts". J Biol Chem. 284 (11): 6605–9. doi:10.1074/jbc.C900002200. PMC 2652271. PMID 19126550.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  55. ^ Maller Schulman BR, Liang X, Stahlhut C, DelConte C, Stefani G, Slack FJ (2008). "The let-7 microRNA target gene, Mlin41/Trim71 is required for mouse embryonic survival and neural tube closure". Cell Cycle. 7 (24): 3935–42. doi:10.4161/cc.7.24.7397. PMC 2895810. PMID 19098426.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  56. ^ Heo I, Joo C, Cho J, Ha M, Han J, Kim VN (2008). "Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA". Mol Cell. 32 (2): 276–84. doi:10.1016/j.molcel.2008.09.014. PMID 18951094.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  57. ^ Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I, Muller RU, Straka E, Su L, Burki EA, Crowell RE, Patel R, Kulkarni T, Homer R, Zelterman D, Kidd KK, Zhu Y, Christiani DC, Belinsky SA, Slack FJ, Weidhaas JB (2008). "A SNP in a let-7 microRNA complementary site in the KRAS 3′UTR Increases Non-Small Cell Lung Cancer Risk". Cancer Res. 68 (20): 8535–40. doi:10.1158/0008-5472.CAN-08-2129. PMC 2672193. PMID 18922928.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  58. ^ Andachi Y (2008). "A novel biochemical method to identify target genes of individual microRNAs: Identification of a new Caenorhabditis elegans let-7 target". RNA. 14 (11): 2440–51. doi:10.1261/rna.1139508. PMC 2578851. PMID 18824511.
  59. ^ Ding XC, Slack FJ, Grosshans H (2008). "The let-7 microRNA interfaces extensively with the translation machinery to regulate cell differentiation". Cell Cycle. 7 (19): 3083–90. doi:10.4161/cc.7.19.6778. PMC 2887667. PMID 18818519.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  60. ^ Forman JJ, Legesse-Miller A, Coller HA (2008). "A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence". Proc Natl Acad Sci U S A. 105 (39): 14879–84. Bibcode:2008PNAS..10514879F. doi:10.1073/pnas.0803230105. PMC 2567461. PMID 18812516.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  61. ^ Roush S, Slack FJ (2008). "The let-7 family of microRNAs". Trends Cell Biol. 18 (10): 505–16. doi:10.1016/j.tcb.2008.07.007. PMID 18774294.
  62. ^ Tennessen JM, Thummel CS (2008). "let-7: Developmental timing conserved through evolution". Curr Biol. 18 (16): R707–8. doi:10.1016/j.cub.2008.07.013. PMC 2583239. PMID 18727906.
  63. ^ Chan SP, Ramaswamy G, Choi EY, Slack FJ (2008). "Identification of specific let-7 microRNA binding complexes in Caenorhabditis elegans". RNA. 14 (10): 2104–14. doi:10.1261/rna.551208. PMC 2553747. PMID 18719242.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  64. ^ Tokumaru S, Suzuki M, Yamada H, Nagino M, Takahashi T (2008). "let-7 regulates Dicer expression and constitutes a negative feedback loop". Carcinogenesis. 29 (11): 2073–7. doi:10.1093/carcin/bgn187. PMID 18700235.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  65. ^ Büssing I, Slack FJ, Grosshans H (2008). "let-7 microRNAs in development, stem cells and cancer". Trends Mol Med. 14 (9): 400–9. doi:10.1016/j.molmed.2008.07.001. PMID 18674967.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  66. ^ Jérôme T, Laurie P, Louis B, Pierre C (2007). "Enjoy the Silence: The Story of let-7 MicroRNA and Cancer". Curr Genomics. 8 (4): 229–33. doi:10.2174/138920207781386933. PMC 2430685. PMID 18645597.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  67. ^ Reid JG, Nagaraja AK, Lynn FC, Drabek RB, Muzny DM, Shaw CA, Weiss MK, Naghavi AO, Khan M, Zhu H, Tennakoon J, Gunaratne GH, Corry DB, Miller J, McManus MT, German MS, Gibbs RA, Matzuk MM, Gunaratne PH (2008). "Mouse let-7 miRNA populations exhibit RNA editing that is constrained in the 5′-seed/ cleavage/anchor regions and stabilize predicted mmu-let-7a:mRNA duplexes". Genome Res. 18 (10): 1571–81. doi:10.1101/gr.078246.108. PMC 2556275. PMID 18614752.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  68. ^ Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl EE, Nitsch R, Wulczyn FG (2008). "A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment". Nat Cell Biol. 10 (8): 987–93. doi:10.1038/ncb1759. PMID 18604195.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  69. ^ Caygill EE, Johnston LA (2008). "Temporal Regulation of Metamorphic Processes in Drosophila by the let-7 and miR-125 Heterochronic MicroRNAs". Curr Biol. 18 (13): 943–50. doi:10.1016/j.cub.2008.06.020. PMC 2736146. PMID 18571409.
  70. ^ Newman MA, Thomson JM, Hammond SM (2008). "Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing". RNA. 14 (8): 1539–49. doi:10.1261/rna.1155108. PMC 2491462. PMID 18566191.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  71. ^ Edge RE, Falls TJ, Brown CW, Lichty BD, Atkins H, Bell JC (2008). "A let-7 MicroRNA-sensitive vesicular stomatitis virus demonstrates tumor-specific replication". Mol Ther. 16 (8): 1437–43. doi:10.1038/mt.2008.130. PMID 18560417.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  72. ^ Sokol NS, Xu P, Jan YN, Ambros V (2008). "Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis". Genes Dev. 22 (12): 1591–6. doi:10.1101/gad.1671708. PMC 2428057. PMID 18559475.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  73. ^ Motoyama K, Inoue H, Nakamura Y, Uetake H, Sugihara K, Mori M (2008). "Clinical significance of high mobility group A2 in human gastric cancer and its relationship to let-7 microRNA family". Clin Cancer Res. 14 (8): 2334–40. doi:10.1158/1078-0432.CCR-07-4667. PMID 18413822.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  74. ^ Boyerinas B, Park SM, Shomron N, Hedegaard MM, Vinther J, Andersen JS, Feig C, Xu J, Burge CB, Peter ME (2008). "Identification of let-7-regulated oncofetal genes". Cancer Res. 68 (8): 2587–91. doi:10.1158/0008-5472.CAN-08-0264. PMID 18413726.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  75. ^ Peng Y, Laser J, Shi G, Mittal K, Melamed J, Lee P, Wei JJ (2008). "Antiproliferative effects by Let-7 repression of high-mobility group A2 in uterine leiomyoma". Mol Cancer Res. 6 (4): 663–73. doi:10.1158/1541-7786.MCR-07-0370. PMID 18403645.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  76. ^ Garfield D (2008). "let-7 microRNA expression and the distinction between nonmucinous and mucinous bronchioloalveolar carcinomas". Lung Cancer. 60 (2): 307. doi:10.1016/j.lungcan.2008.02.010. PMID 18395292.
  77. ^ Dröge P, Davey CA (2008). "Do cells let-7 determine stemness?". Cell Stem Cell. 2 (1): 8–9. doi:10.1016/j.stem.2007.12.003. PMID 18371414.
  78. ^ Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L, Weidhaas JB, Brown D, Bader AG, Slack FJ (2008). "The let-7 microRNA reduces tumor growth in mouse models of lung cancer". Cell Cycle. 7 (6): 759–64. doi:10.4161/cc.7.6.5834. PMID 18344688.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  79. ^ Solomon A, Mian Y, Ortega-Cava C, Liu VW, Gurumurthy CB, Naramura M, Band V, Band H (2008). "Upregulation of the let-7 microRNA with precocious development in lin-12/Notch hypermorphic C. elegans mutants". Dev Biol. 316 (2): 191–9. doi:10.1016/j.ydbio.2007.12.046. PMC 2390880. PMID 18334253.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  80. ^ Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA, Jacks T (2008). "Suppression of non-small cell lung tumor development by the let-7 microRNA family". Proc Natl Acad Sci U S A. 105 (10): 3903–8. Bibcode:2008PNAS..105.3903K. doi:10.1073/pnas.0712321105. PMC 2268826. PMID 18308936.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  81. ^ Cevec M, Thibaudeau C, Plavec J (2008). "Solution structure of a let-7 miRNA:lin-41 mRNA complex from C. elegans". Nucleic Acids Res. 36 (7): 2330–7. doi:10.1093/nar/gkn088. PMC 2367737. PMID 18296482.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  82. ^ Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, Song E (2007). "let-7 regulates self renewal and tumorigenicity of breast cancer cells". Cell. 131 (6): 1109–23. doi:10.1016/j.cell.2007.10.054. PMID 18083101.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  83. ^ O'Farrell F, Esfahani SS, Engström Y, Kylsten P (2008). "Regulation of the Drosophila lin-41 homologue dappled by let-7 reveals conservation of a regulatory mechanism within the LIN-41 subclade". Dev Dyn. 237 (1): 196–208. doi:10.1002/dvdy.21396. PMID 18069688.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  84. ^ Park SM, Shell S, Radjabi AR, Schickel R, Feig C, Boyerinas B, Dinulescu DM, Lengyel E, Peter ME (2007). "Let-7 prevents early cancer progression by suppressing expression of the embryonic gene HMGA2". Cell Cycle. 6 (21): 2585–90. doi:10.4161/cc.6.21.4845. PMID 17957144.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  85. ^ Lin YC, Hsieh LC, Kuo MW, Yu J, Kuo HH, Lo WL, Lin RJ, Yu AL, Li WH (2007). "Human TRIM71 and its nematode homologue are targets of let-7 microRNA and its zebrafish orthologue is essential for development". Mol Biol Evol. 24 (11): 2525–34. doi:10.1093/molbev/msm195. PMID 17890240.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  86. ^ Tsonis PA, Call MK, Grogg MW, Sartor MA, Taylor RR, Forge A, Fyffe R, Goldenberg R, Cowper-Sal-lari R, Tomlinson CR (2007). "microRNAs and regeneration: let-7 members as potential regulators of dedifferentiation in lens and inner ear hair cell regeneration of the adult newt". Biochem Biophys Res Commun. 362 (4): 940–5. doi:10.1016/j.bbrc.2007.08.077. PMC 2683343. PMID 17765873.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  87. ^ Inamura K, Togashi Y, Nomura K, Ninomiya H, Hiramatsu M, Satoh Y, Okumura S, Nakagawa K, Ishikawa Y (2007). "let-7 microRNA expression is reduced in bronchioloalveolar carcinoma, a non-invasive carcinoma, and is not correlated with prognosis". Lung Cancer. 58 (3): 392–6. doi:10.1016/j.lungcan.2007.07.013. PMID 17728006.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  88. ^ Salzman DW, Shubert-Coleman J, Furneaux H (2007). "P68 RNA helicase unwinds the human let-7 microRNA precursor duplex and is required for let-7-directed silencing of gene expression". J Biol Chem. 282 (45): 32773–9. doi:10.1074/jbc.M705054200. PMID 17724023.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  89. ^ Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D, Wilson M, Wang X, Shelton J, Shingara J, Chin L, Brown D, Slack FJ (2007). "The let-7 microRNA represses cell proliferation pathways in human cells". Cancer Res. 67 (16): 7713–22. doi:10.1158/0008-5472.CAN-07-1083. PMID 17699775.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  90. ^ Wakiyama M, Takimoto K, Ohara O, Yokoyama S (2007). "Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system". Genes Dev. 21 (15): 1857–62. doi:10.1101/gad.1566707. PMC 1935024. PMID 17671087.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  91. ^ Liu S, Xia Q, Zhao P, Cheng T, Hong K, Xiang Z (2007). "Characterization and expression patterns of let-7 microRNA in the silkworm (Bombyx mori)". BMC Dev Biol. 7: 88. doi:10.1186/1471-213X-7-88. PMC 1976426. PMID 17651473.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  92. ^ Shell S, Park SM, Radjabi AR, Schickel R, Kistner EO, Jewell DA, Feig C, Lengyel E, Peter ME (2007). "Let-7 expression defines two differentiation stages of cancer". Proc Natl Acad Sci U S A. 104 (27): 11400–5. Bibcode:2007PNAS..10411400S. doi:10.1073/pnas.0704372104. PMC 2040910. PMID 17600087.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  93. ^ Lee YS, Dutta A (2007). "The tumor suppressor microRNA let-7 represses the HMGA2 oncogene". Genes Dev. 21 (9): 1025–30. doi:10.1101/gad.1540407. PMC 1855228. PMID 17437991.
  94. ^ Nolde MJ, Saka N, Reinert KL, Slack FJ (2007). "The C. elegans pumilio homolog, puf-9, is required for the 3'UTR mediated repression of the let-7 microRNA target gene, hbl-1". Dev Biol. 305 (2): 551–63. doi:10.1016/j.ydbio.2007.02.040. PMC 2096746. PMID 17412319.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  95. ^ Hayes GD, Ruvkun G (2006). "Misexpression of the Caenorhabditis elegans miRNA let-7 is sufficient to drive developmental programs". Cold Spring Harb Symp Quant Biol. 71: 21–7. doi:10.1101/sqb.2006.71.018. PMID 17381276.
  96. ^ Mayr C, Hemann MT, Bartel DP (2007). "Disrupting the Pairing Between let-7 and Hmga2 Enhances Oncogenic Transformation". Science. 315 (5818): 1576–9. Bibcode:2007Sci...315.1576M. doi:10.1126/science.1137999. PMC 2556962. PMID 17322030.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  97. ^ Wulczyn FG, Smirnova L, Rybak A, Brandt C, Kwidzinski E, Ninnemann O, Strehle M, Seiler A, Schumacher S, Nitsch R (2007). "Post-transcriptional regulation of the let-7 microRNA during neural cell specification". FASEB J. 21 (2): 415–26. doi:10.1096/fj.06-6130com. PMID 17167072.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  98. ^ Hayes GD, Frand AR, Ruvkun G (2006). "The mir-84 and let-7 paralogous microRNA genes of Caenorhabditis elegans direct the cessation of molting via the conserved nuclear hormone receptors NHR-23 and NHR-25". Development. 133 (23): 4631–41. doi:10.1242/dev.02655. PMID 17065234.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  99. ^ Akao Y, Nakagawa Y, Naoe T (2006). "let-7 microRNA functions as a potential growth suppressor in human colon cancer cells". Biol Pharm Bull. 29 (5): 903–6. doi:10.1248/bpb.29.903. PMID 16651716.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  100. ^ Schulman BR, Esquela-Kerscher A, Slack FJ (2005). "Reciprocal Expression of lin-41 and the microRNAs let-7 and mir-125 During Mouse Embryogenesis". Dev Dyn. 234 (4): 1046–54. doi:10.1002/dvdy.20599. PMC 2596717. PMID 16247770.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  101. ^ Esquela-Kerscher A, Johnson SM, Bai L, Saito K, Partridge J, Reinert KL, Slack FJ (2005). "Post-embryonic expression of C. elegans microRNAs belonging to the lin-4 and let-7 families in the hypodermis and the reproductive system". Dev Dyn. 234 (4): 868–77. doi:10.1002/dvdy.20572. PMC 2572564. PMID 16217741.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  102. ^ Li M, Jones-Rhoades MW, Lau NC, Bartel DP, Rougvie AE (2005). "Regulatory mutations of mir-48, a C. elegans let-7 family MicroRNA, cause developmental timing defects". Dev Cell. 9 (3): 415–22. doi:10.1016/j.devcel.2005.08.002. PMID 16139229.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  103. ^ Abbott AL, Alvarez-Saavedra E, Miska EA, Lau NC, Bartel DP, Horvitz HR, Ambros V (2005). "The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans". Dev Cell. 9 (3): 403–14. doi:10.1016/j.devcel.2005.07.009. PMID 16139228.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  104. ^ Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Pasquinelli AE (2005). "Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation". Cell. 122 (4): 553–63. doi:10.1016/j.cell.2005.07.031. PMID 16122423.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  105. ^ Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E, Filipowicz W (2005). "Inhibition of translational initiation by Let-7 MicroRNA in human cells". Science. 309 (5740): 1573–6. Bibcode:2005Sci...309.1573P. doi:10.1126/science.1115079. PMID 16081698.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  106. ^ Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005). "RAS is regulated by the let-7 microRNA family". Cell. 120 (5): 635–47. doi:10.1016/j.cell.2005.01.014. PMID 15766527.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  107. ^ Grosshans H, Johnson T, Reinert KL, Gerstein M, Slack FJ (2005). "The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans". Dev Cell. 8 (3): 321–30. doi:10.1016/j.devcel.2004.12.019. PMID 15737928.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  108. ^ Kloosterman WP, Wienholds E, Ketting RF, Plasterk RH (2004). "Substrate requirements for let-7 function in the developing zebrafish embryo". Nucleic Acids Res. 32 (21): 6284–91. doi:10.1093/nar/gkh968. PMC 535676. PMID 15585662.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  109. ^ Bracht J, Hunter S, Eachus R, Weeks P, Pasquinelli AE (2004). "Trans-splicing and polyadenylation of let-7 microRNA primary transcripts". RNA. 10 (10): 1586–94. doi:10.1261/rna.7122604. PMC 1370645. PMID 15337850.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  110. ^ Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T (2004). "Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival". Cancer Res. 64 (11): 3753–6. doi:10.1158/0008-5472.CAN-04-0637. PMID 15172979.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  111. ^ Vella MC, Choi EY, Lin SY, Reinert K, Slack FJ (2004). "The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′UTR". Genes Dev. 18 (2): 132–7. doi:10.1101/gad.1165404. PMC 324419. PMID 14729570.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  112. ^ Basyuk E, Suavet F, Doglio A, Bordonné R, Bertrand E (2003). "Human let-7 stem–loop precursors harbor features of RNase III cleavage products". Nucleic Acids Res. 31 (22): 6593–7. doi:10.1093/nar/gkg855. PMC 275551. PMID 14602919.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  113. ^ Johnson SM, Lin SY, Slack FJ (2003). "The time of appearance of the C. elegans let-7 microRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter". Dev Biol. 259 (2): 364–79. doi:10.1016/S0012-1606(03)00202-1. PMID 12871707.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  114. ^ Pasquinelli AE, McCoy A, Jiménez E, Saló E, Ruvkun G, Martindale MQ, Baguñà J (2003). "Expression of the 22 nucleotide let-7 heterochronic RNA throughout the Metazoa: a role in life history evolution?". Evol Dev. 5 (4): 372–8. doi:10.1046/j.1525-142X.2003.03044.x. PMID 12823453.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  115. ^ Sempere LF, Dubrovsky EB, Dubrovskaya VA, Berger EM, Ambros V (2002). "The expression of the let-7 small regulatory RNA is controlled by ecdysone during metamorphosis in Drosophila melanogaster". Dev Biol. 244 (1): 170–9. doi:10.1006/dbio.2002.0594. PMID 11900466.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  116. ^ Hutvágner G, McLachlan J, Pasquinelli AE, Bálint E, Tuschl T, Zamore PD (2001). "A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA". Science. 293 (5531): 834–8. doi:10.1126/science.1062961. PMID 11452083.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  117. ^ Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Müller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000). "Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA". Nature. 408 (6808): 86–9. doi:10.1038/35040556. PMID 11081512.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  118. ^ Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G (2000). "The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor". Mol Cell. 5 (4): 659–69. doi:10.1016/S1097-2765(00)80245-2. PMID 10882102.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  119. ^ Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000). "The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans". Nature. 403 (6772): 901–6. Bibcode:2000Natur.403..901R. doi:10.1038/35002607. PMID 10706289.{{cite journal}}: CS1 maint: multiple names: authors list (link)

External links[edit]

Category:MicroRNA