User:WarpingSpacetime/Wave Accelerated Ring Pinch Reactor

From Wikipedia, the free encyclopedia
The WARP Reactor
Cross-sectional view of WARP Reactor
WARP Core Close-up

The Wave Accelerated Ring Pinch (WARP) Reactor.[1][2][3][4][5] is a novel petawatt-class pulsed power machine, invented by physicist Michael G. Anderson, which promises orders-of-magnitude increase in the generation and acceleration efficiency of ultra-intense high energy ion beams[6][7] for magneto-inertial confinement fusion[7][8], super-radiant flash x-ray/neutron generation[4][5] and the study of new Relativistic High Energy Density (RHED) physics[9][10][11]

WARP Reactor Concept[edit]

The WARP Reactor concept utilizes pulsed power modules to drive its WARP Core which consists primarily of two Dense Plasma Focuses (DPFs)[12] and two Ion Ring[7] Marx Generators[13] (IRMGs) fired directly at one another. The two DPF and IRMG heads with embedded reflex triodes are implemented to reduce the size and cost of the drivers and increase ion ring generation, capture and acceleration efficiencies along with the added benefits of favorable magnetic field line curvature throughout the plasma liner implosion process due to higher velocity shear-stabilized pinch flows[14] near gun muzzles and greater machine tuning capability for properly timing the liner implosion and ion beam generation, injection and compression of the two colliding and subsequently merged ion rings onto a solid target.

WARP achieves its performance boost by injecting two tubular MeV ion beams from opposite ends of a double-barreled DPF head and through magnetic cusps to form co-rotating ion rings which collide and merge near the mid-plane of the device and are then subsequently radially compressed and azimuthally accelerated to GeV energies during the properly timed dual DPF plasma liner implosions.

WARP Reactor Physics[edit]

The physics behind the radial compression and azimuthal acceleration of the ion rings is as follows: The dual DPF-generated imploding plasma liners flux-compress a seed axial magnetic field creating a rapidly rising “magnetic wave” which causes the merged ion rings to radially compress via the Lorentz force and, due to the conservation of magnetic flux and canonical angular momentum, subsequently increases the ion ring azimuthal energy, which goes as: Efinal ~ Einitial x (Rinitial / Rfinal)2.

WARP Reactor Parameters[edit]

DPF Liner & Ion Ring Metrics WARP Parameters
DPF/Z-Pinch Current 60MA
Initial Ion Beam Current 2MA
Final Ion Ring Current 20MA
Initial Ion Beam Energy MeV
Final Ion Ring Energy GeV
Acceleration Efficiency = Ering/Estored 25%
Total Machine Size (Vertical Configuration) 30ft OD x 60ft Tall 

References[edit]

  1. ^ Anderson, Michael G.; Walters, James K.; Anaya, Enrique; Max, Donald A. (April 21–22, 2022). "Wave Accelerated Ring Pinch eXperiment (WARP X)". ZNetUS Workshop.{{cite web}}: CS1 maint: date format (link)
  2. ^ 8031824, Bystriskii, Vitaly; Garate, Eusebio & Anderson, Michael et al., "United States Patent: 8031824 - Inductive plasma source for plasma electric generation system", issued October 4, 2011 
  3. ^ Binderbauer, M. W.; Guo, H. Y.; Tuszewski, M.; Putvinski, S.; Sevier, L.; Barnes, D.; Rostoker, N.; Anderson, M. G.; Andow, R.; Bonelli, L.; Brandi, F. (2010-07-22). "Dynamic Formation of a Hot Field Reversed Configuration with Improved Confinement by Supersonic Merging of Two Colliding High- β Compact Toroids". Physical Review Letters. 105 (4): 045003. doi:10.1103/PhysRevLett.105.045003. ISSN 0031-9007.
  4. ^ a b Dzarakhokhova, A. S.; Zaretskiy, N. P.; Maksimychev, A. V.; Men’shikov, L. I.; Men’shikov, P. L. (2020). "Acceleration of Ion Rings by Collapsing Liners". Technical Physics. 65 (6): 865–873. doi:10.1134/S1063784220060092. ISSN 1063-7842.
  5. ^ a b Bystritskii, Vitaly; Wessel, Frank J.; Rostoker, Norman; Rahman, Hafiz (1997), Panarella, Emilio (ed.), "Novel Staged Z-Pinch Concept as Super Radiant X-Ray Source for ICF", Current Trends in International Fusion Research, Boston, MA: Springer US, pp. 347–364, doi:10.1007/978-1-4615-5867-5_22, ISBN 978-1-4615-5867-5, retrieved 2022-04-30
  6. ^ Anderson, M.; Garate, E.; Rostoker, N.; Song, Y.; Drie, A. Van; Bystritskii, Vitaly (2005). "Propagation of intense plasma and ion beams across B-field in vacuum and magnetized plasma". Laser and Particle Beams. 23 (2): 117–129. doi:10.1017/S0263034605050202. ISSN 1469-803X.
  7. ^ a b c Greenly, John B. (2005-07-31). "Ion Rings for Magnetic Fusion". DOE Technical Report. doi:10.2172/862052.
  8. ^ Stygar, W. A.; Awe, T. J.; Bailey, J. E.; Bennett, N. L.; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L. (2015-11-30). "Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments". Physical Review Special Topics - Accelerators and Beams. 18 (11): 110401. doi:10.1103/PhysRevSTAB.18.110401.
  9. ^ Šoda, Barbara; Sudhir, Vivishek; Kempf, Achim (2022-04-21). "Acceleration-Induced Effects in Stimulated Light-Matter Interactions". Physical Review Letters. 128 (16): 163603. doi:10.1103/PhysRevLett.128.163603.
  10. ^ Relativity in rotating frames : relativistic physics in rotating reference frames. Guido Rizzi, Matteo Luca Ruggiero. Dordrecht: Kluwer Academic Publishers. 2004. ISBN 1-4020-1805-3. OCLC 53469404.{{cite book}}: CS1 maint: others (link)
  11. ^ Smiet, Christopher Berg; Candelaresi, Simon; Bouwmeester, Dirk (2017). "Ideal relaxation of the Hopf fibration". Physics of Plasmas. 24 (7): 072110. doi:10.1063/1.4990076. ISSN 1070-664X.
  12. ^ Schmidt, A.; Anaya, E.; Anderson, M.; Angus, J.; Chapman, S.; Cooper, C.; Drury, O.; Goyon, C.; Hawkins, S.; Higginson, D. P.; Holod, I. (2021). "First Experiments and Radiographs on the MegaJOuLe Neutron Imaging Radiography (MJOLNIR) Dense Plasma Focus". IEEE Transactions on Plasma Science. 49 (11): 3299–3306. doi:10.1109/TPS.2021.3106313. ISSN 0093-3813.
  13. ^ Stygar, W. A.; LeChien, K. R.; Mazarakis, M. G.; Savage, M. E.; Stoltzfus, B. S.; Austin, K. N.; Breden, E. W.; Cuneo, M. E.; Hutsel, B. T.; Lewis, S. A.; McKee, G. R. (2017-04-07). "Impedance-matched Marx generators". Physical Review Accelerators and Beams. 20 (4): 040402. doi:10.1103/PhysRevAccelBeams.20.040402. ISSN 2469-9888.
  14. ^ Mitrani, James M.; Brown, Joshua A.; Goldblum, Bethany L.; Laplace, Thibault A.; Claveau, Elliot L.; Draper, Zack T.; Forbes, Eleanor G.; Golingo, Ray P.; McLean, Harry S.; Nelson, Brian A.; Shumlak, Uri (2021-11-01). "Thermonuclear neutron emission from a sheared-flow stabilized Z-pinch". Physics of Plasmas. 28 (11): 112509. doi:10.1063/5.0066257. ISSN 1070-664X.



Category:Fusion reactors Category:Warp drive theory Category:Pulsed power Category:Neutron sources Category:Accelerator physics Category:Plasma physics Category:Inertial confinement fusion Category:Particle accelerators Category:Inertial confinement fusion