Augmented hexagonal prism

From Wikipedia, the free encyclopedia
Augmented hexagonal prism
TypeJohnson
J53J54J55
Faces4 triangles
5 squares
2 hexagons
Edges22
Vertices13
Vertex configuration2x4(42.6)
1(34)
4(32.4.6)
Symmetry groupC2v
Dual polyhedronmonolaterotruncated hexagonal bipyramid
Propertiesconvex
Net

In geometry, the augmented hexagonal prism is one of the Johnson solids (J54). As the name suggests, it can be constructed by augmenting a hexagonal prism by attaching a square pyramid (J1) to one of its equatorial faces. When two or three such pyramids are attached, the result may be a parabiaugmented hexagonal prism (J55), a metabiaugmented hexagonal prism (J56), or a triaugmented hexagonal prism (J57).

Construction[edit]

The augmented hexagonal prism is constructed by attaching one equilateral square pyramid onto the square face of a hexagonal prism, a process known as augmentation.[1] This construction involves the removal of the prism square face and replacing it with the square pyramid, so that there are eleven faces: four equilateral triangles, five squares, and two regular hexagons.[2] A convex polyhedron in which all of the faces are regular is a Johnson solid, and the augmented hexagonal prism is among them, enumerated as .[3] Relatedly, two or three equilateral square pyramids attaching onto more square faces of the prism give more different Johnson solids; these are the parabiaugmented hexagonal prism , the metabiaugmented hexagonal prism , and the triaugmented hexagonal prism .[1]

Properties[edit]

An augmented hexagonal prism with edge length has surface area[2]

the sum of two hexagons, four equilateral triangles, and five squares area. Its volume[2]
can be obtained by slicing into one equilateral square pyramid and one hexagonal prism, and adding their volume up.[2]

It has an axis of symmetry passing through the apex of a square pyramid and the centroid of a prism square face, rotated in a half and full-turn angle. Its dihedral angle can be obtained by calculating the angle of a square pyramid and a hexagonal prism. The dihedral angle between two adjacent triangles in a square pyramid is . The dihedral angle between both square and hexagon in a prism is . The dihedral angle between square-to-square on the prism edge is , the hexagon's internal angle. Therefore, for the augmented hexagonal prism, the dihedral angle of the square-to-triangle in a square prism is , and that of the square-to-triangle faces on the edge in which the square pyramid and hexagonal prism are attached is .[4]

References[edit]

  1. ^ a b Rajwade, A. R. (2001). Convex Polyhedra with Regularity Conditions and Hilbert's Third Problem. Texts and Readings in Mathematics. Hindustan Book Agency. p. 84–89. doi:10.1007/978-93-86279-06-4. ISBN 978-93-86279-06-4.
  2. ^ a b c d Berman, Martin (1971). "Regular-faced convex polyhedra". Journal of the Franklin Institute. 291 (5): 329–352. doi:10.1016/0016-0032(71)90071-8. MR 0290245.
  3. ^ Francis, Darryl (August 2013). "Johnson solids & their acronyms". Word Ways. 46 (3): 177.
  4. ^ Johnson, Norman W. (1966). "Convex polyhedra with regular faces". Canadian Journal of Mathematics. 18: 169–200. doi:10.4153/cjm-1966-021-8. MR 0185507. S2CID 122006114. Zbl 0132.14603.

External links[edit]