Bonnesen's inequality
Appearance
Bonnesen's inequality is an inequality relating the length, the area, the radius of the incircle and the radius of the circumcircle of a Jordan curve. It is a strengthening of the classical isoperimetric inequality.[1]
More precisely, consider a planar simple closed curve of length bounding a domain of area . Let and denote the radii of the incircle and the circumcircle. Bonnesen proved the inequality[2]
The term in the right hand side is known as the isoperimetric defect.[1]
Loewner's torus inequality with isosystolic defect is a systolic analogue of Bonnesen's inequality.[3]
References
[edit]- ^ a b Burago, Yu. D.; Zalgaller, V. A. (1988), "1.3: The Bonnesen inequality and its analogues", Geometric Inequalities, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, translated by Sosinskiĭ, A. B., Berlin: Springer-Verlag, pp. 3–4, doi:10.1007/978-3-662-07441-1, ISBN 3-540-13615-0, MR 0936419, Zbl 0633.53002
- ^ Bonnesen, T. (1921), "Sur une amélioration de l'inégalité isopérimetrique du cercle et la démonstration d'une inégalité de Minkowski", Comptes rendus hebdomadaires des séances de l'Académie des Sciences (in French), 172: 1087–1089, JFM 48.0839.01
- ^ Horowitz, Charles; Usadi Katz, Karin; Katz, Mikhail G. (2009), "Loewner's torus inequality with isosystolic defect", Journal of Geometric Analysis, 19 (4): 796–808, arXiv:0803.0690, doi:10.1007/s12220-009-9090-y, MR 2538936