Jump to content

Bonnesen's inequality

From Wikipedia, the free encyclopedia

Bonnesen's inequality is an inequality relating the length, the area, the radius of the incircle and the radius of the circumcircle of a Jordan curve. It is a strengthening of the classical isoperimetric inequality.[1]

More precisely, consider a planar simple closed curve of length bounding a domain of area . Let and denote the radii of the incircle and the circumcircle. Bonnesen proved the inequality[2]

The term in the right hand side is known as the isoperimetric defect.[1]

Loewner's torus inequality with isosystolic defect is a systolic analogue of Bonnesen's inequality.[3]

References

[edit]
  1. ^ a b Burago, Yu. D.; Zalgaller, V. A. (1988), "1.3: The Bonnesen inequality and its analogues", Geometric Inequalities, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, translated by Sosinskiĭ, A. B., Berlin: Springer-Verlag, pp. 3–4, doi:10.1007/978-3-662-07441-1, ISBN 3-540-13615-0, MR 0936419, Zbl 0633.53002
  2. ^ Bonnesen, T. (1921), "Sur une amélioration de l'inégalité isopérimetrique du cercle et la démonstration d'une inégalité de Minkowski", Comptes rendus hebdomadaires des séances de l'Académie des Sciences (in French), 172: 1087–1089, JFM 48.0839.01
  3. ^ Horowitz, Charles; Usadi Katz, Karin; Katz, Mikhail G. (2009), "Loewner's torus inequality with isosystolic defect", Journal of Geometric Analysis, 19 (4): 796–808, arXiv:0803.0690, doi:10.1007/s12220-009-9090-y, MR 2538936