Brett's hypothesis

From Wikipedia, the free encyclopedia

Brett's hypothesis[1][2] also known as the heat-invariant hypothesis[3][4] or Brett's heat-invariant hypothesis[5] proposes that upper thermal tolerance limits are less variable geographically than lower thermal tolerance limits. This hypothesis was originally proposed for fish[1] but lately has been supported by studies with reptiles,[6] amphibians,[5] and aquatic insects.[7] Three different mechanisms are proposed for the existence of this large-scale pattern of thermal tolerance limits variation:

  • A constrained evolutionary potential of upper thermal tolerance limits
  • The buffering effects of thermoregulatory behaviour has greater potential to face heat rather than cold stress
  • Resolution of thermal data used

Global versus local scales in Brett's hypothesis[edit]

While Brett's hypothesis has been strongly supported at global scales, heat tolerance seems to respond differently to smaller-scale climatic and habitat factors. For instance, lizards from the Iberian Peninsula[8] show higher variation in upper thermal tolerance limits than in lower thermal tolerance limits. Similar results are found in adult frogs,[5] tadpoles, and dragonfly larvae[7] at local scales.

References[edit]

  1. ^ a b Brett, J. R. (June 1956). "Some Principles in the Thermal Requirements of Fishes". The Quarterly Review of Biology. 31 (2): 75–87. doi:10.1086/401257. S2CID 84155127 – via The University of Chicago Press Journals.
  2. ^ Gaston, Kevin J.; Chown, Steven L.; Calosi, Piero; Bernardo, Joseph; Bilton, David T.; Clarke, Andrew; Clusella-Trullas, Susana; Ghalambor, Cameron K.; Konarzewski, Marek; Peck, Lloyd S.; Porter, Warren P.; Pörtner, Hans O.; Rezende, Enrico L.; Schulte, Patricia M.; Spicer, John I.; Stillman, Jonathon H.; Terblanche, John S.; van Kleunen, Mark (November 2009). McPeek, Mark A. (ed.). "Macrophysiology: A Conceptual Reunification". The American Naturalist. 174 (5): 595–612. doi:10.1086/605982. hdl:10019.1/119921. PMID 19788354. S2CID 6239591 – via The University of Chicago Press Journals.
  3. ^ Araújo, Miguel B.; Ferri-Yáñez, Francisco; Bozinovic, Francisco; Marquet, Pablo A.; Valladares, Fernando; Chown, Steven L. (September 2013). "Heat freezes niche evolution". Ecology Letters. 16 (9): 1206–1219. doi:10.1111/ele.12155. hdl:10261/125474. ISSN 1461-0248. PMID 23869696.
  4. ^ Bozinovic, Francisco; Orellana, María J. M.; Martel, Sebastián I.; Bogdanovich, José M. (December 2014). "Testing the heat-invariant and cold-variability tolerance hypotheses across geographic gradients". Comparative Biochemistry and Physiology A. 178: 46–50. doi:10.1016/j.cbpa.2014.08.009. PMID 25152532.
  5. ^ a b c Pintanel, Pol; Tejedo, Miguel; Ron, Santiago R.; Llorente, Gustavo A.; Merino-Viteri, Andrés (July 24, 2019). "Elevational and microclimatic drivers of thermal tolerance in Andean Pristimantis frogs". Journal of Biogeography. 46 (8): 1664–1675. doi:10.1111/jbi.13596. S2CID 181476379.
  6. ^ Muñoz, Martha M.; Stimola, Maureen A.; Algar, Adam C.; Conover, Asa; Rodriguez, Anthony J.; Landestoy, Miguel A.; Bakken, George S.; Losos, Jonathan B. (January 15, 2014). "Evolutionary stasis and lability in thermal physiology in a group of tropical lizards". Proceedings of the Royal Society B. 281 (1778). doi:10.1098/rspb.2013.2433. eISSN 1471-2954. ISSN 0962-8452. PMC 3906933. PMID 24430845 – via The Royal Society.
  7. ^ a b Pintanel, Pol; Tejedo, Miguel; Salinas-Ivanenko, Sofia; Jervis, Phillip; Merino-Viteri, Andrés (August 2021). "Predators like it hot: Thermal mismatch in a predator-prey system across an elevational tropical gradient". Journal of Animal Ecology. 90 (8): 1985–1995. doi:10.1111/1365-2656.13516. PMID 33942306. S2CID 233720734.
  8. ^ Herrando-Pérez, Salvador; Monasterio, Camila; Beukema, Wouter; Gomes, Verónica; Ferri-Yáñez, Francisco; Vieites, David R.; Buckley, Lauren B.; Araújo, Miguel B. (December 10, 2019). "Heat tolerance is more variable than cold tolerance across species of Iberian lizards after controlling for intraspecific variation". Functional Ecology. 34 (3): 631–645. doi:10.1111/1365-2435.13507. hdl:10174/34934. S2CID 214359887.