From Wikipedia, the free encyclopedia
In atmospheric radiation , Chandrasekhar's X - and Y-function appears as the solutions of problems involving diffusive reflection and transmission, introduced by the Indian American astrophysicist Subrahmanyan Chandrasekhar .[ 1] [ 2] [ 3] [ 4] [ 5] The Chandrasekhar's X - and Y -function
X
(
μ
)
,
Y
(
μ
)
{\displaystyle X(\mu ),\ Y(\mu )}
defined in the interval
0
≤
μ
≤
1
{\displaystyle 0\leq \mu \leq 1}
, satisfies the pair of nonlinear integral equations
X
(
μ
)
=
1
+
μ
∫
0
1
Ψ
(
μ
′
)
μ
+
μ
′
[
X
(
μ
)
X
(
μ
′
)
−
Y
(
μ
)
Y
(
μ
′
)
]
d
μ
′
,
Y
(
μ
)
=
e
−
τ
1
/
μ
+
μ
∫
0
1
Ψ
(
μ
′
)
μ
−
μ
′
[
Y
(
μ
)
X
(
μ
′
)
−
X
(
μ
)
Y
(
μ
′
)
]
d
μ
′
{\displaystyle {\begin{aligned}X(\mu )&=1+\mu \int _{0}^{1}{\frac {\Psi (\mu ')}{\mu +\mu '}}[X(\mu )X(\mu ')-Y(\mu )Y(\mu ')]\,d\mu ',\\[5pt]Y(\mu )&=e^{-\tau _{1}/\mu }+\mu \int _{0}^{1}{\frac {\Psi (\mu ')}{\mu -\mu '}}[Y(\mu )X(\mu ')-X(\mu )Y(\mu ')]\,d\mu '\end{aligned}}}
where the characteristic function
Ψ
(
μ
)
{\displaystyle \Psi (\mu )}
is an even polynomial in
μ
{\displaystyle \mu }
generally satisfying the condition
∫
0
1
Ψ
(
μ
)
d
μ
≤
1
2
,
{\displaystyle \int _{0}^{1}\Psi (\mu )\,d\mu \leq {\frac {1}{2}},}
and
0
<
τ
1
<
∞
{\displaystyle 0<\tau _{1}<\infty }
is the optical thickness of the atmosphere. If the equality is satisfied in the above condition, it is called conservative case , otherwise non-conservative . These functions are related to Chandrasekhar's H-function as
X
(
μ
)
→
H
(
μ
)
,
Y
(
μ
)
→
0
as
τ
1
→
∞
{\displaystyle X(\mu )\rightarrow H(\mu ),\quad Y(\mu )\rightarrow 0\ {\text{as}}\ \tau _{1}\rightarrow \infty }
and also
X
(
μ
)
→
1
,
Y
(
μ
)
→
e
−
τ
1
/
μ
as
τ
1
→
0.
{\displaystyle X(\mu )\rightarrow 1,\quad Y(\mu )\rightarrow e^{-\tau _{1}/\mu }\ {\text{as}}\ \tau _{1}\rightarrow 0.}
The
X
{\displaystyle X}
and
Y
{\displaystyle Y}
can be approximated up to n th order as
X
(
μ
)
=
(
−
1
)
n
μ
1
⋯
μ
n
1
[
C
0
2
(
0
)
−
C
1
2
(
0
)
]
1
/
2
1
W
(
μ
)
[
P
(
−
μ
)
C
0
(
−
μ
)
−
e
−
τ
1
/
μ
P
(
μ
)
C
1
(
μ
)
]
,
Y
(
μ
)
=
(
−
1
)
n
μ
1
⋯
μ
n
1
[
C
0
2
(
0
)
−
C
1
2
(
0
)
]
1
/
2
1
W
(
μ
)
[
e
−
τ
1
/
μ
P
(
μ
)
C
0
(
μ
)
−
P
(
−
μ
)
C
1
(
−
μ
)
]
{\displaystyle {\begin{aligned}X(\mu )&={\frac {(-1)^{n}}{\mu _{1}\cdots \mu _{n}}}{\frac {1}{[C_{0}^{2}(0)-C_{1}^{2}(0)]^{1/2}}}{\frac {1}{W(\mu )}}[P(-\mu )C_{0}(-\mu )-e^{-\tau _{1}/\mu }P(\mu )C_{1}(\mu )],\\[5pt]Y(\mu )&={\frac {(-1)^{n}}{\mu _{1}\cdots \mu _{n}}}{\frac {1}{[C_{0}^{2}(0)-C_{1}^{2}(0)]^{1/2}}}{\frac {1}{W(\mu )}}[e^{-\tau _{1}/\mu }P(\mu )C_{0}(\mu )-P(-\mu )C_{1}(-\mu )]\end{aligned}}}
where
C
0
{\displaystyle C_{0}}
and
C
1
{\displaystyle C_{1}}
are two basic polynomials of order n (Refer Chandrasekhar chapter VIII equation (97)[ 6] ),
P
(
μ
)
=
∏
i
=
1
n
(
μ
−
μ
i
)
{\displaystyle P(\mu )=\prod _{i=1}^{n}(\mu -\mu _{i})}
where
μ
i
{\displaystyle \mu _{i}}
are the zeros of Legendre polynomials and
W
(
μ
)
=
∏
α
=
1
n
(
1
−
k
α
2
μ
2
)
{\displaystyle W(\mu )=\prod _{\alpha =1}^{n}(1-k_{\alpha }^{2}\mu ^{2})}
, where
k
α
{\displaystyle k_{\alpha }}
are the positive, non vanishing roots of the associated characteristic equation
1
=
2
∑
j
=
1
n
a
j
Ψ
(
μ
j
)
1
−
k
2
μ
j
2
{\displaystyle 1=2\sum _{j=1}^{n}{\frac {a_{j}\Psi (\mu _{j})}{1-k^{2}\mu _{j}^{2}}}}
where
a
j
{\displaystyle a_{j}}
are the quadrature weights given by
a
j
=
1
P
2
n
′
(
μ
j
)
∫
−
1
1
P
2
n
(
μ
j
)
μ
−
μ
j
d
μ
j
{\displaystyle a_{j}={\frac {1}{P_{2n}'(\mu _{j})}}\int _{-1}^{1}{\frac {P_{2n}(\mu _{j})}{\mu -\mu _{j}}}\,d\mu _{j}}
If
X
(
μ
,
τ
1
)
,
Y
(
μ
,
τ
1
)
{\displaystyle X(\mu ,\tau _{1}),\ Y(\mu ,\tau _{1})}
are the solutions for a particular value of
τ
1
{\displaystyle \tau _{1}}
, then solutions for other values of
τ
1
{\displaystyle \tau _{1}}
are obtained from the following integro-differential equations
∂
X
(
μ
,
τ
1
)
∂
τ
1
=
Y
(
μ
,
τ
1
)
∫
0
1
d
μ
′
μ
′
Ψ
(
μ
′
)
Y
(
μ
′
,
τ
1
)
,
∂
Y
(
μ
,
τ
1
)
∂
τ
1
+
Y
(
μ
,
τ
1
)
μ
=
X
(
μ
,
τ
1
)
∫
0
1
d
μ
′
μ
′
Ψ
(
μ
′
)
Y
(
μ
′
,
τ
1
)
{\displaystyle {\begin{aligned}{\frac {\partial X(\mu ,\tau _{1})}{\partial \tau _{1}}}&=Y(\mu ,\tau _{1})\int _{0}^{1}{\frac {d\mu '}{\mu '}}\Psi (\mu ')Y(\mu ',\tau _{1}),\\{\frac {\partial Y(\mu ,\tau _{1})}{\partial \tau _{1}}}+{\frac {Y(\mu ,\tau _{1})}{\mu }}&=X(\mu ,\tau _{1})\int _{0}^{1}{\frac {d\mu '}{\mu '}}\Psi (\mu ')Y(\mu ',\tau _{1})\end{aligned}}}
∫
0
1
X
(
μ
)
Ψ
(
μ
)
d
μ
=
1
−
[
1
−
2
∫
0
1
Ψ
(
μ
)
d
μ
+
{
∫
0
1
Y
(
μ
)
Ψ
(
μ
)
d
μ
}
2
]
1
/
2
.
{\displaystyle \int _{0}^{1}X(\mu )\Psi (\mu )\,d\mu =1-\left[1-2\int _{0}^{1}\Psi (\mu )\,d\mu +\left\{\int _{0}^{1}Y(\mu )\Psi (\mu )\,d\mu \right\}^{2}\right]^{1/2}.}
For conservative case, this integral property reduces to
∫
0
1
[
X
(
μ
)
+
Y
(
μ
)
]
Ψ
(
μ
)
d
μ
=
1.
{\displaystyle \int _{0}^{1}[X(\mu )+Y(\mu )]\Psi (\mu )\,d\mu =1.}
If the abbreviations
x
n
=
∫
0
1
X
(
μ
)
Ψ
(
μ
)
μ
n
d
μ
,
y
n
=
∫
0
1
Y
(
μ
)
Ψ
(
μ
)
μ
n
d
μ
,
α
n
=
∫
0
1
X
(
μ
)
μ
n
d
μ
,
β
n
=
∫
0
1
Y
(
μ
)
μ
n
d
μ
{\displaystyle x_{n}=\int _{0}^{1}X(\mu )\Psi (\mu )\mu ^{n}\,d\mu ,\ y_{n}=\int _{0}^{1}Y(\mu )\Psi (\mu )\mu ^{n}\,d\mu ,\ \alpha _{n}=\int _{0}^{1}X(\mu )\mu ^{n}\,d\mu ,\ \beta _{n}=\int _{0}^{1}Y(\mu )\mu ^{n}\,d\mu }
for brevity are introduced, then we have a relation stating
(
1
−
x
0
)
x
2
+
y
0
y
2
+
1
2
(
x
1
2
−
y
1
2
)
=
∫
0
1
Ψ
(
μ
)
μ
2
d
μ
.
{\displaystyle (1-x_{0})x_{2}+y_{0}y_{2}+{\frac {1}{2}}(x_{1}^{2}-y_{1}^{2})=\int _{0}^{1}\Psi (\mu )\mu ^{2}\,d\mu .}
In the conservative, this reduces to
y
0
(
x
2
+
y
2
)
+
1
2
(
x
1
2
−
y
1
2
)
=
∫
0
1
Ψ
(
μ
)
μ
2
d
μ
{\displaystyle y_{0}(x_{2}+y_{2})+{\frac {1}{2}}(x_{1}^{2}-y_{1}^{2})=\int _{0}^{1}\Psi (\mu )\mu ^{2}\,d\mu }
If the characteristic function is
Ψ
(
μ
)
=
a
+
b
μ
2
{\displaystyle \Psi (\mu )=a+b\mu ^{2}}
, where
a
,
b
{\displaystyle a,b}
are two constants, then we have
α
0
=
1
+
1
2
[
a
(
α
0
2
−
β
0
2
)
+
b
(
α
1
2
−
β
1
2
)
]
{\displaystyle \alpha _{0}=1+{\frac {1}{2}}[a(\alpha _{0}^{2}-\beta _{0}^{2})+b(\alpha _{1}^{2}-\beta _{1}^{2})]}
.
For conservative case, the solutions are not unique. If
X
(
μ
)
,
Y
(
μ
)
{\displaystyle X(\mu ),\ Y(\mu )}
are solutions of the original equation, then so are these two functions
F
(
μ
)
=
X
(
μ
)
+
Q
μ
[
X
(
μ
)
+
Y
(
μ
)
]
,
G
(
μ
)
=
Y
(
μ
)
+
Q
μ
[
X
(
μ
)
+
Y
(
μ
)
]
{\displaystyle F(\mu )=X(\mu )+Q\mu [X(\mu )+Y(\mu )],\ G(\mu )=Y(\mu )+Q\mu [X(\mu )+Y(\mu )]}
, where
Q
{\displaystyle Q}
is an arbitrary constant.
^ Chandrasekhar, Subrahmanyan. Radiative transfer. Courier Corporation, 2013.
^ Howell, John R., M. Pinar Menguc, and Robert Siegel. Thermal radiation heat transfer. CRC press, 2010.
^ Modest, Michael F. Radiative heat transfer. Academic press, 2013.
^ Hottel, Hoyt Clarke, and Adel F. Sarofim. Radiative transfer. McGraw-Hill, 1967.
^ Sparrow, Ephraim M., and Robert D. Cess. "Radiation heat transfer." Series in Thermal and Fluids Engineering, New York: McGraw-Hill, 1978, Augmented ed. (1978).
^ Chandrasekhar, Subrahmanyan. Radiative transfer. Courier Corporation, 2013.