Jump to content

Draft:Parabolic Hausdorff dimension

From Wikipedia, the free encyclopedia

In fractal geometry, the parabolic Hausdorff dimension is a restricted version of the genuine Hausdorff dimension.[1] Only parabolic cylinders, i. e. rectangles with a distinct non-linear scaling between time and space are permitted as covering sets. It is usefull to determine the Hausdorff dimension of self-similar stochastic processes, such as the geometric Brownian motion[2] or stable Lévy processes[3] plus Borel measurable drift function .

Definitions[edit]

We define the -parabolic -Hausdorff outer measure for any set as

where the -parabolic cylinders are contained in

We define the -parabolic Hausdorff dimension of as

The case equals the genuine Hausdorff dimension .

Application[edit]

Let . We can calculate the Hausdorff dimension of the fractional Brownian motion of Hurst index plus some measurable drift function . We get

and

For an isotropic -stable Lévy process for plus some measurable drift function we get

and

Inequalities and identities[edit]

For one has

and

Further, for the fractional Brownian motion of Hurst index one has

and for an isotropic -stable Lévy process for one has

and

For constant functions we get

If , i. e. is -Hölder continuous, for the estimates

hold.

Finally, for the Brownian motion and we get

and

References[edit]

  1. ^ Taylor & Watson, 1985.
  2. ^ Peres & Sousi, 2016.
  3. ^ Kern & Pleschberger, 2024.

Sources[edit]

  • Kern, Peter; Pleschberger, Leonard (2024). "Parabolic Fractal Geometry of Stable Lévy Processes with Drift". arXiv:2312.13800 [math.PR].{{cite arXiv}}: CS1 maint: multiple names: authors list (link)
  • Peres, Yuval; Sousi, Perla (2016). "Dimension of fractional Brownian motion with variable drift". Probab. Theory Relat. Fields. 165 (3–4): 771–794. arXiv:1310.7002. doi:10.1007/s00440-015-0645-5.
  • Taylor, S.; Watson, N. (1985). "A Hausdorff measure classification of polar sets for the heat equation", Math. Proc. Camb. Phil. Soc. 97: 325–344.