Jump to content

List of multiplanetary systems

From Wikipedia, the free encyclopedia
(Redirected from Kepler-342)
Number of extrasolar planet discoveries per year through 2023. Colors indicate method of detection.

From the total of 4,949 stars known to have exoplanets (as of July 24, 2024), there are a total of 1007 known multiplanetary systems,[1] or stars with at least two confirmed planets, beyond the Solar System. This list includes systems with at least three confirmed planets or two confirmed planets where additional candidates have been proposed. The stars with the most confirmed planets are the Sun (the Solar System's star) and Kepler-90, with 8 confirmed planets each, followed by TRAPPIST-1 with 7 planets.

The 1007 multiplanetary systems are listed below according to the star's distance from Earth. Proxima Centauri, the closest star to the Solar System, has three planets (b, c and d). The nearest system with four or more confirmed planets is Gliese 876, with four known.[citation needed][a] The farthest confirmed multiplanetary system is OGLE-2012-BLG-0026L, at 13,300 light-years (4,100 pc) away.[3]

The table below contains information about the coordinates, spectral and physical properties, and the number of confirmed (unconfirmed) planets for systems with at least 2 planets and 1 not confirmed. The two most important stellar properties are mass and metallicity because they determine how these planetary systems form. Systems with higher mass and metallicity tend to have more planets and more massive planets. However, although low metallicity stars tend to have fewer massive planets, particularly hot-Jupiters, they also tend to have a larger number of close-in planets, orbiting at less than 1 AU.[4]

Multiplanetary systems

[edit]
Color indicates number of planets
2 (x) 3 4 5 6 7 8 9
Star
Constellation
Right
ascension

Declination
Apparent
magnitude

Distance (ly)
Spectral
type

Mass
(M)
Temperature (K)
Age
(Gyr)
Confirmed
(unconfirmed)
planets
Notes
Sun - - −26.74 0.000016 G2V 1 5778 4.572 8 (1) The hypothesised Planet Nine remains unconfirmed.
Proxima Centauri Centaurus 14h 29m 42.94853s −62° 40′ 46.1631″ 10.43 to 11.11[5] 4.244 M5.5Ve[6] 0.122 3042 4.85 2 (1) Closest star to the Sun and closest star to the Sun with a multiplanetary system. Planet b is potentially habitable.[7][8] Planet c initially appeared likely but has since been disputed.[9]
Lalande 21185 Ursa Major 11h 03m 20.1940s +35° 58′ 11.5682″ 7.520[10] 8.3044±0.0007 M2V 0.39 3601±51 8.047 2 (1) Brightest red dwarf star in the northern celestial hemisphere.[11][12]
Lacaille 9352 Piscis Austrinus 23h 05m 52.04s −35° 51′ 11.05″ 7.34 10.721 M0.5V 0.486 3688±86 4.57 2 (1) The unconfirmed planet d is potentially habitable.[13]
Luyten's Star Canis Minor 07h 27m 24.4991s 05° 13′ 32.827″ 9.872 11.20 M3.5V 0.26 3150 unknown 2 (2) Stellar activity level and rotational rate suggest an age higher than 8 billion years.[14] Planet b is potentially habitable.[15]
YZ Ceti Cetus 01h 12m 30.64s −16° 59′ 56.3″ 12.07 11.74 M4.5V 0.13 3056 4 3 (1) Flare star.[16]
Gliese 1061 Horologium 03h 35m 59.69s −44° 30′ 45.3″ 13.03 12.04 M5.5V 0.113 2953 unknown 3 Planets c and d are potentially habitable.[17]
Teegarden's Star Aries 02h 53m 00.89s +16° 52′ 53″ 15.13 12.497 M7V 0.097 3034 8 3 Teegarden's Star b and Teegarden's Star c are likely Earth-mass planets that orbit in the habitable zone.[18]
Wolf 1061 Ophiuchus 16h 30m 18.0584s −12° 39′ 45.325″ 10.07 14.050 ± 0.002 M3.5V 0.294 3342 unknown 3 Planet c is potentially habitable.[19][20][21]
Gliese 876 Aquarius 22h 53m 16.73s −14° 15′ 49.3″ 10.17 15.25 M4V 0.334 3348 4.893 4 Planet b is a gas giant which orbits in the habitable zone.[22]
82 G. Eridani Eridanus 03h 19m 55.65s −43° 04′ 11.2″ 4.254 19.71 G8V 0.7 5401 5.76 3 (3) This star also has a dust disk[23] with a semi-major axis at approximately 19 AU.[24]
Gliese 581 Libra 15h 19m 26.83s −07° 43′ 20.2″ 10.56 20.56 M3V 0.311 3484 4.326 3 (1) The disputed planet d is potentially habitable.[25]
Gliese 667 C Scorpius 17h 18m 57.16s −34° 59′ 23.14″ 10.20 21 M1.5V 0.31 3700 2 2 (1) Triple star system - all exoplanets orbit around Star C. Planet c is potentially habitable, and there are more unconfirmed planets.[26][27][28]
HD 219134 Cassiopeia 23h 13m 14.74s 57° 10′ 03.5″ 5.57 21 K3Vvar 0.794 4699 12.66 6 Closest star to the Sun with exactly six[29] exoplanets, and closest K-type main sequence star to the Sun with a multiplanetary system. One of the oldest stars with a multiplanetary system, although it is still more metal-rich than the Sun. None of the known planets is in the habitable zone.[30]
61 Virginis Virgo 13h 18m 24.31s −18° 18′ 40.3″ 4.74 28 G5V 0.954 5531 8.96 2 (1) Planet d remains unconfirmed,[31] and a 2021 study found that it was likely a false positive.[32] 61 Virginis also has a debris disk.
Gliese 433 Hydra 11h 35m 26.9485s −25° 10′ 08.9″ 9.79 29.8±0.1 M1.5V 0.48 3550±100 unknown 3 An infrared excess around this star suggests a circumstellar disk.[33]
Gliese 357 Hydra 09h 36m 01.6373s −21° 39′ 38.878″ 10.906 30.776 M2.5V 0.362 3488 unknown 3 Planet d is a potentially habitable Super-Earth.[34][35][36][37]
L 98-59 Volans 08h 18m 07.62s −68° 18′ 46.8″ 11.69 34.6 M3V 0.312 3412 unknown 4 (1) The unconfirmed planet f orbits in the habitable zone.[38]
Gliese 414 A Ursa Major 11h 11m 05.88s 30° 26′ 42.61″ 8.31 38.76 K7V 0.65 4120 12.4 2 (0) [39][40]
Gliese 806 Cygnus 20h 45m 04.099s +44° 29′ 56.6″ 10.79 39.3 M1.5V 0.423 3586 3 2 (1) -
TRAPPIST-1 Aquarius 23h 06m 29.283s −05° 02′ 28.59″ 18.80 39.5 M8V 0.089 2550 7.6 7 Planets d, e, f and g are potentially habitable. Only star known with exactly seven confirmed planets. All seven terrestrial planets lie within only 0.07 AU of the star.
55 Cancri Cancer 08h 52m 35.81s +28° 19′ 50.9″ 5.95 40 K0IV-V 1.026 5217 7.4 5 All five known planets orbit around star A (none are circumbinary or orbit around star B). Closest system with exactly five confirmed planets.
Gliese 180 Eridanus 04h 53m 49.9798s −17° 46′ 24.294″ 10.894 40.3 M2V[41] or M3V[42] 0.39 3562 unknown 3 The habitability of planets b and c is disputed.[43][44]
HD 69830 Puppis 08h 18m 23.95s −12° 37′ 55.8″ 5.95 41 K0V 0.856 5385 7.446 3 A debris disk exterior to the three exoplanets was detected by the Spitzer Space Telescope in 2005.[45]
HD 40307 Pictor 05h 54m 04.24s −60° 01′ 24.5″ 7.17 42 K2.5V 0.752 4977 1.198 4 (2) The existence of planets e and g are disputed.[46] If confirmed, planet g is potentially habitable.[47]
Upsilon Andromedae Andromeda 01h 36m 47.84s +41° 24′ 19.7″ 4.09 44 F8V 1.27 6107 3.781 3 Nearest F-type main sequence star with a multiplanetary system. Second-brightest star in the night sky with a multiplanetary system after 7 Canis Majoris. All exoplanets orbit around star A in the binary system.
47 Ursae Majoris Ursa Major 10h 59m 27.97s +40° 25′ 48.9″ 5.10 46 G0V 1.029 5892 7.434 3 Planet Taphao Thong was discovered in 1996 and was one of the first exoplanets to be discovered.[48] The planet was the first long-period extrasolar planet discovered. The other planets were discovered later.[49]
Nu2 Lupi Lupus 15h 21m 49.57s −48° 19′ 01.1″ 5.65 47 G2V 0.906 5664 10.36 3 One of the oldest stars in the solar neighbourhood.[50][51][52]
LHS 1140 Cetus 00h 44m 59.31s −15° 16′ 16.7″ 14.18 48.9 M4.5V[53] 0.179 3216±39 5 2 (1) Planet b is a potentially habitable Super-Earth.[54]
Gliese 163 Dorado 04h 09m 16s −53° 22′ 25″ 11.8 49 M3.5V 0.4 unknown 3 5 Planet c is possibly a potentially habitable Super-Earth but is probably too hot or massive.[55][56]
Mu Arae Ara 17h 44m 08.70s −51° 50′ 02.6″ 5.15 51 G3IV-V 1.077 5704 6.413 4 Planet Quijote orbits in the circumstellar habitable zone. However, it is a gas giant, so it itself is uninhabitable although a large moon orbiting around it may be habitable.
GJ 3929 Corona Borealis 15h 58m 18.8s 35° 24′ 24.3″ 12.67 51.58 M3.5V 0.313 3384 unknown 2 (0) [57][58]
Gliese 676 A Ara 17h 30m 11.2042s −51° 38′ 13.116″ 9.59 53 M0V 0.71 unknown unknown 4 Held the record for widest range of masses in a planetary system in 2012.[59]
HD 7924 Cassiopeia 01h 21m 59.12s +76° 42′ 37.0″ 7.19 55 K0V 0.832 5177 unknown 3 These planets may be potentially habitable Super-Earths.[60]
Pi Mensae Mensa 05h 37m 09.8851s −80° 28′ 08.8313″ 5.65 59.62±0.07 G0V 1.11 6013 3.4 3 Outer planet is likely a brown dwarf.[61]
Gliese 3293 Eridanus 04h 28m 35.72s −25° 10′ 08.9″ 11.96 59 M2.5V 0.42 3466±49 unknown 4 Planets b and d orbit in the habitable zone.[62]
LHS 1678 Caelum 04h 32m 43s −39° 47′ 21″ 12 64.8 M2V 0.345 3490 unknown 3 (0) [63]
HD 104067 Corvus 11h 59m 10.0s −20° 21′ 13.6″ 7.92 66.3 K3V 0.82 4942 4.8 2 (1) The innermost planet, which is unconfirmed, might suffer from significant tidal heating.[64]
HD 142 Phoenix 00h 06m 19.0s −49° 04′ 30″ 5.70 67 G1 IV 1.1 6180 5.93 3 -
HD 215152 Aquarius 22h 43m 21s −06° 24′ 03″ 8.13 70 G8IV 1.019 5646 7.32 4 A debris disk candidate as it has an infrared excess.[65]
HD 164922 Hercules 18h 02m 30.86s +26° 18′ 46.8″ 7.01 72 G9V[66] 0.874 5293 13.4 4 Oldest star with a multiplanetary system. Despite its age, it is more metal-rich than the Sun.[66]
HD 63433 Gemini 07h 49m 55.0s +27° 21′ 47.4″ 6.92 73 G5V 0.99 5640 0.4 3
HIP 57274 Ursa Major 11h 44m 41s +30° 57′ 33″ 8.96 85 K5V 0.73 4640 7.87 3 -
HD 39194 Mensa 05h 44m 32s −70° 08′ 37″ 8.08 86.2 K0V unknown 5205 unknown 3 The planets have eccentric orbits.[67]
LP 791-18 Crater 11h 02m 45.95s −16° 24′ 22.3″ 16.9 86.9 M6V/M7V 0.139 2960 0.5 3
HD 181433 Pavo 19h 25m 09.57s −66° 28′ 07.7″ 8.38 87 K5V 0.777 4962 8.974 3 -
HD 134606 Apus 15h 15m 15s −70° 31′ 11″ 6.85 87 G6IV unknown unknown unknown 5 The planets have moderately eccentric orbits.[68]
HD 158259 Draco 17h 25m 24.0s +52° 47′ 26″ 6.46 89 G0 1.08 unknown unknown 5 (1) A G-type star slightly more massive than the Sun.[69] Planet g remains unconfirmed.[69]
HD 82943 Hydra 09h 34m 50.74s −12° 07′ 46.4″ 6.54 90 F9V Fe+0.5[70] 1.175 5874 3.08 3 Planets b and c are in a 2:1 orbital resonance.[71] Planet b orbits in the habitable zone, but it and planet c are massive enough to be brown dwarfs. HD 82943 has an unusual lithium-6 abundance.[72]
Gliese 3138 Cetus 02h 09m 10.90s −16° 20′ 22.53″ 10.877 92.9 0.681 3717±49 unknown 3
GJ 9827 Pisces 23h 27m 04.84s −01° 17′ 10.59″ 10.10 96.8±0.2 K6V 0.593 4294±52 unknown 3 Also known as K2-135. Planet b is extremely dense, with at least half of its mass being iron.[73]
K2-239 Sextans 10h 42m 22.63s +04° 26′ 28.86″ 14.5 101.5 M3V 0.4 3420 unknown 3
TOI-700 Dorado 06h 28m 22.97s −65° 34′ 43.01″ 13.10 101.61 M2V 0.416 3480 1.5 4 Planets d and e are potentially habitable.[74][75][76]
HD 17926 Fornax 02h 51m 56.16s −30° 48′ 53.2″ 6.38 105 F6V 1.145 6201 unknown 3 The star has a red dwarf companion.[77]
HD 37124 Taurus 05h 37m 02.49s +20° 43′ 50.8″ 7.68 110 G4V 0.83 5606 3.327 3 Planet c orbits at the outer edge of the habitable zone.[78]
HD 20781 Fornax 03h 20m 03s −28° 47′ 02″ 8.44 115 G9.5V 0.7 5256±29 unknown 4 Located in binary star system.[79][80]
Kepler-444 Lyra 19h 19m 01s 41° 38′ 05″ 9.0 117 K0V 0.758 5040 11.23 5 Nearest multiplanetary system where the planets were discovered by the Kepler space telescope.
HD 141399 Boötes 15h 46m 54.0s +46° 59′ 11″ 7.2 118 K0V 1.07 5600 unknown 4 Planet c orbits in the habitable zone.[81]
Kepler-42 Cygnus 19h 28m 53s +44° 37′ 10″ 16.12 126 M5V[82] 0.13 3068 unknown 3 -
HD 31527 Lepus 04h 55m 38s −23° 14′ 31″ 7.48 126 G0V unknown unknown unknown 3 -
HD 10180 Hydrus 01h 37m 53.58s −60° 30′ 41.5″ 7.33 127 G1V 1.055 5911 4.335 6 (3) Has three unconfirmed candidates. If these candidate exoplanets were confirmed, HD 10180 would have the largest planetary system of any star.[83]
HD 23472 Reticulum 03h 41m 50.3988s −62° 46′ 01.4772″ 9.72 127.48 K3.5V 0.67 4684±99 unknown 5
HR 8799 Pegasus 23h 07m 28.72s +21° 08′ 03.3″ 5.96 129 A5V 1.472 7429 0.064 4 Only A-type main sequence star with a multiplanetary system, and hottest and most massive single main sequence star with a multiplanetary system. All four planets are massive super-Jupiters.
HD 27894 Reticulum 04h 20m 47.05s −59° 24′ 39.0″ 9.42 138 K2V 0.8 4875 3.9 3 -
HD 93385 Vela 10h 46m 15.1160s −41° 27′ 51.7261″ 7.486 141.6 G2V 1.07 5823 4.13 3
K2-3 Leo 11h 29m 20.3918s −01° 27′ 17.280″ 12.168 143.9±0.4 M0V 0.601 3835±70 1 3 The outermost planet orbits in the habitable zone.[84]
HD 34445 Orion 05h 17m 41.0s +07° 21′ 12″ 7.31 152 G0V 1.07 5836 8.5 1 (5) Some planets were not detected or inferred to be false positives in a later study.[85]
HD 204313 Capricornus 21h 28m 12.21s –21° 43′ 34.5″ 7.99 154 G5V 1.045 5767 3.38 3 -
HD 3167 Pisces 00h 34m 57.5s +04° 22′ 53″ 8.97 154.4 K0V 0.852 5300 10.2 4 -
HIP 34269 Puppis 07h 06m 13.98s −47° 35′ 13.87″ 10.59 154.81 0.74 4440±100 unknown 4
HD 133131 Libra 15h 03m 35.80651s −27° 50′ 27.5520″ 8.4 168 G2V+G2V[86] 0.95 5799±19 6 3 2 planets around primary, and 1 planet around secondary star.[86]
K2-136 [ru] Taurus 04h 29m 38.99s +22° 52′ 57.80″ 11.2 173 K5V 0.71 4364±70 0.7 3
HIP 14810 Aries 03h 11m 14.23s +21° 05′ 50.5″ 8.51 174 G5V 0.989 5485 5.271 3 -
HD 191939 Draco 20h 08m 05.75s +66° 51′ 2.1″ 8.971 175 G9V 0.81 5348 8.7 6 [87]
HD 125612 Virgo 14h 20m 53.51s −17° 28′ 53.5″ 8.33 177 G3V 1.099 5897 2.15 3 -
HD 184010 Vulpecula 19h 31m 22.0s +26° 37′ 02″ 5.9 200 KOIII-IV 1.35 4971 2.76 3 -
HD 109271 Virgo 12h 33m 36.0s −11° 37′ 19″ 8.05 202 G5 1.047 5783 7.3 2 (1) -
HD 38677 Orion 05h 47m 06.0s −10° 37′ 49″″ 8.0 202 F8V 1.21 6196.0 2.01 4 -
TOI-178 Sculptor 00h 29m 12.30s 30° 27′ 13.46″ 11.95 205.16 K7V[88] 0.65 4316±70 7.1 6 The planets are in an orbital resonance.[88]
HD 108236 Centaurus 12h 26m 17.89s −51° 21′ 46.21″ 9.24 211 G3V 0.97 5730 5.8 5 -
Kepler-37 Lyra 18h 58m 23.1s 44° 31′ 05″ 9.77 215 G8V 0.803 5417 6 3 (1) The existence of Kepler-37e is dubious.[89]
K2-72 Aquarius 22h 18m 29.2548s −09° 36′ 44.3824″ 15.04 217 M2V 0.27 3497 unknown 4 2 planets in habitable zone
Kepler-138 Lyra 19h 21m 32.0s +43° 17′ 35″ 13.5 218.5 M1V 0.57 3871 unknown 3 (1)
K2-233 Libra 15h 21m 55.2s −20° 13′ 54″ 10.0 221 K3 0.8 4950 0.36 3
TOI-1260 Ursa Major 10h 28m 35.03s +65° 51′ 16.38″ 11.973 239.5 0.66 4227±85 6.7 3
LP 358-499 Taurus 04h 40m 35.64s +25° 00′ 36.05″ 13.996 245.3 0.46 3655±80 unknown 4 Also known as K2-133
K2-266 Sextans 10h 31m 44.5s +00° 56′ 15″ 252 K 0.69 4285 8.4 4 (2)
K2-155 Taurus 04h 21m 52.5s +21° 21′ 13″ 12.8 267 K7 0.65 4258 unknown 3
K2-384 Cetus 01h 21m 59.86s 00° 45′ 04.41″ 16.12 270 M?V 0.33 3623±138 unknown 5
TOI-1136 Draco 12h 48m 44.38 s +64° 51′ 18.99″ 9.534 275.8 1.022 5770±50 0.7 6 (1)
TOI-561 Sextans 09h 52m 44.44s +06° 12′ 57.97″ 10.252 279 G9V 0.785 5455 5 4 (1) -
Kepler-445 Cygnus 19h 54m 57.0s +46° 29′ 55″ 18 294 0.18 3157 unknown 3 -
TOI-763 Centaurus 12h 57m 52.45s −39° 45′ 27.71″ 10.156 311 0.917 5444 6.2 2 (1) -
K2-229 Virgo 12h 27m 29.5848s −06° 43′ 18.7660″ 10.985 335 K2V 0.837 5185 5.4 3
Kepler-102 Lyra 18h 45m 55.9s +47° 12′ 29″ 11.492 340 K3V[90] 0.81 4809 1.41 5
V1298 Tauri Taurus 04h 05m 19.5912s +20° 09′ 25.5635″ 10.31 354 K0-1.5[91] 1.101 4970 0.023 4 This star is a young T Tauri variable.[92]
K2-302 Aquarius 22h 20m 22.7764s −09° 30′ 34.2934″ 11.98 359.3 unknown 3297±73 unknown 3
K2-198 Virgo 13h 15m 22.5s −06° 27′ 54″ 11.0 362 0.8 5213 unknown 3
TOI-125 Hydrus 01h 34m 22.73s −66° 40′ 32.95″ 11.02 363 0.859 5320 unknown 3 (2)
HIP 41378 Cancer 08h 26m 28.0s +10° 04′ 49″ 8.9 378 F8 1.15 6199 unknown 5 (2) Planet f has an unusually low density, and might have rings or an extended atmosphere.[93][94] More planets are still suspected.[95]
Kepler-446 Lyra 18h 49m 00.0s +44° 55′ 16″ 16.5 391 M4V 0.22 3359 unknown 3 -
HD 33142 Lepus 05h 07m 35.54s −13° 59′ 11.34″ 7.96 394.3 1.52 5025+24
−16
unknown 3 Host star is a giant star with spectral type of K0III.[96]
K2-148 Cetus 00h 58m 04.28s −00° 11′ 35.36″ 13.05 407 K7V 0.65 4079±70 unknown 3 A secondary red dwarf is gravitationally bound to K2-148.[97]
Kepler-68 Cygnus 19h 24m 07.76s +49° 02′ 25.0″ 8.588 440 G1V 1.079 5793 6.3 3 (1) Planet d, the outermost confirmed planet, is a Jupiter-sized planet which orbits in the habitable zone.[98] Radial velocity measurements discovered an additional signal, which could be a fourth planet or a stellar companion.[99]
HD 28109 Hydrus 04h 20m 57.13s −68° 06′ 09.51″ 9.38 457 1.26 6120±50 unknown 3
COROT-7 Monoceros 06h 43m 49.47s −01° 03′ 46.9″ 11.73 489 K0V 0.93 5275 1.5 3
XO-2 Lynx 07h 48m 07.4814s +50° 13′ 03.2578″ 11.18 496±3 K0V+K0V unknown unknown 6.3 4 Binary with each star orbited by two planets.[100][101]
Kepler-411 Cygnus 19h 10m 25.3s +49° 31′ 24″ 12.5 499.4 K3V 0.83 4974 unknown 5
K2-381 Sagittarius 19h 12m 06.46s −21° 00′ 27.51″ 13.01 505 K2 0.754 4473±138 unknown 3
K2-285 Pisces 23h 17m 32.2s +01° 18′ 01″ 12.03 508 K2V 0.83 4975 unknown 4
K2-32 Ophiuchus 16h 49m 42.2602s −19° 32′ 34.151″ 12.31 510 G9V 0.856 5275 7.9 4 The planets are likely in a 1:2:5:7 orbital resonance.[102]
TOI-1246 Draco 16h 44m 27.96s 70° 25′ 46.70″ 11.6 558 1.12 5217±50 unknown 4
K2-352 Cancer 09h 21m 46.8434s +18° 28′ 10.34710″ 11.12 577 G2V 0.98 5791 unknown 3
Kepler-398 Lyra 19h 25m 52.5s +40° 20′ 38″ 578 K5V 0.72 4493 unknown 3
Kepler-186 Cygnus 19h 54m 36.6s +43° 57′ 18″ 15.29[103] 579.23[104] M1V[105] 0.478 3788 unknown 5 Planet f is the first Earth-size exoplanet discovered that orbits in the habitable zone.[106]
K2-37 Scorpius 16h 13m 48.2445s −24° 47′ 13.4279″ 12.52 590 G3V 0.9 5413 unknown 3
K2-58 Aquarius 22h 15m 17.2364s −14° 02′ 59.3151″ 12.13 596 K2V 0.89 5038 unknown 3
K2-138 Aquarius 23h 15m 47.77s −10° 50′ 58.91″ 12.21 597±55 K1V 0.93 5378±60 2.3 6 Planet g was not fully verified, or could be two long-period planets instead.[107]
K2-38 Scorpius 16h 00m 08.06s −23° 11′ 21.33″ 11.34 630 G3V 1.03 5731±66 unknown 2 (1) Dust disk in system
WASP-47 Aquarius 22h 04m 49.0s −12° 01′ 08″ 11.9 652 G9V 1.084 5400 unknown 4 One planet is a gas giant which orbits in the habitable zone.[108][109] WASP-47 is the only planetary system known to have both planets near the hot Jupiter and another planet much further out.[110]
K2-368 Aquarius 22h 10m 32.58s −11° 09′ 58.02″ 13.54 674 K3 0.746 4663±138 unknown 3 (1)
HAT-P-13 Ursa Major 08h 39m 31.81s +47° 21′ 07.3″ 10.62 698 G4 1.22 5638 5 2 (1) -
Kepler-19 Cygnus 19h 21m 41s +37° 51′ 06″ 15.178 717 G 0.936 5541 1.9 3 System consists of a thick-envelope Super-Earth and two Neptune-mass planets.[111]
Kepler-296 Lyra 19h 06m 09.6s +49° 26′ 14.4″ 12.6 737.113 K7V + M1V[112] unknown 4249 unknown 5 All planets orbit around the primary star.[113] Planets e and f are potentially habitable.[113]
Kepler-454 Lyra 19h 09m 55.0s +38° 13′ 44″ 11.57 753 G 1.028 5687 5.25 3
Kepler-25 Lyra 19h 06m 33.0s +39° 29′ 16″ 11 799 F[114] 1.22 6190 unknown 3 Two planets were discovered by transit-timing variations,[115] and the third planet was discovered by follow-up radial velocity measurements.[116]
Kepler-114 Cygnus 19h 36m 29.0s +48° 20′ 58″ 13.7 846 K 0.71 4450 unknown 3
Kepler-54 Cygnus 19h 39m 06.0s +43° 03′ 23″ 16.3 886 M 0.52 3705 unknown 3
Kepler-20 Lyra 19h 10m 47.524s 42° 20′ 19.30″ 12.51 950 G8V 0.912 5466 8.8 6 Planets e and f were the first Earth-sized planets to be discovered.[117]
K2-19 Virgo 11h 39m 50.4804s +00° 36′ 12.8773″ 13.002 976 K0V[118] or G9V[119] 0.918 5250±70 8 3 -
PSR B1257+12 Virgo 13h 00m 03.58s +12° 40′ 56.5″ 24.31 980 pulsar 1.444 28856 0.797 3 Only pulsar with a multiplanetary system, and first exoplanets and multiplanetary system to be confirmed.[120][121] Star with dimmest apparent magnitude to have a multiplanetary system.
Kepler-62 Lyra 18h 52m 51.060s +45° 20′ 59.507″ 13.75[122] 990 K2V[122] 0.69 4925 7 5 Planets e and f orbit in the habitable zone.[122][123]
Kepler-48 Cygnus 19h 56m 33.41s +40° 56′ 56.47″ 13.04 1000 K 0.88 5190 unknown 5
Kepler-100 Lyra 19h 25m 32.6s +41° 59′ 24″ 1011 G1IV 1.109 5825 6.5 4
Kepler-49 Cygnus 19h 29m 11.0s +40° 35′ 30″ 15.5 1015 K 0.55 3974 unknown 4
Kepler-65 Lyra 19h 14m 45.3s +41° 09′ 04.2″ 11.018 1019 F6IV 1.199 6211 unknown 4 -
Kepler-52 Draco 19h 06m 57.0s +49° 58′ 33″ 15.5 1049 K 0.58 4075 unknown 3
K2-314 Libra 15h 13m 00.0s −16° 43′ 29″ 11.4 1059 G8IV/V 1.05 5430 9 3
K2-219 Pisces 00h 51m 22.9s +08° 52′ 04″ 12.09 1071 G2 1.02 5753±50 unknown 3
K2-268 Cancer 08h 54m 50.2862s +11° 50′ 53.7745″ 13.85 1079 unknown unknown unknown 5
K2-183 Cancer 08h 20m 01.7184s 14° 01′ 10.0711″ 12.85 1083 unknown 5482±50 unknown 3
K2-187 Cancer 08h 50m 05.6682s 23° 11′ 33.3712″ 12.864 1090 G?V 0.967 5438±63 unknown 4
Kepler-1542 Lyra 19h 02m 54.8s +42° 39′ 16″ 1096 G5V 0.94 5564 unknown 4 -
Kepler-26 Lyra 18h 59m 46s +46° 34′ 00″ 16 1100 M0V 0.65 4500 unknown 4 Transiting exoplanets[124] which are low-density planets below the size of Neptune.[125][126]
Kepler-167 Cygnus 19h 30m 38.0s +38° 20′ 43″ 1119 ± 6 0.76 4796 unknown 4
Kepler-81 Cygnus 19h 34m 32.9s +42° 49′ 30″ 15.56 1136 K?V 0.648 4391 unknown 3
Kepler-132 Lyra 18h 52m 56.6s +41° 20′ 35″ 1140 F9 0.98 6003 unknown 4
Kepler-80 Cygnus 19h 44m 27.0s +39° 58′ 44″ 14.804 1218 M0V[127] 0.73 4250 unknown 6 Red dwarf star with six confirmed planets.[128][129] Five of them are in an orbital resonance.[130][129]
Kepler-159 Cygnus 19h 48m 16.8s +40° 52′ 08″ 1219 K 0.63 4625 unknown 2 (1) Star has a very low metallicity.
K2-299 Aquarius 22h 05m 06.5342s −14° 07′ 18.0135″ 13.12 1220 unknown 5724±72 unknown 3
Kepler-88 Lyra 19h 24m 35.5431s +40° 40′ 09.8098″ 13.5 1243 G8IV 1.022 5513±67 2.45 3
Kepler-174 Lyra 19h 09m 45.4s +43° 49:56′ 1269 K unknown 4880 unknown 3 Planet d may orbit in the habitable zone.
Kepler-32 Cygnus 19h 51m 22.0s +46° 34′ 27″ 16 1301.1 M1V 0.58 3900 unknown 3 (2) -
Kepler-83 Lyra 18h 48m 55.8s +43° 39′ 56″ 16.51 1306 K7V 0.664 4164 unknown 3
TOI-1338 Pictor 06h 08m 31.97s +59° 32′ 28.1″ 11.72 1318 F8
M
1.127 6160 4.4 2 (0)
Kepler-271 Lyra 18h 52m 00.7s +44° 17′ 03″ 1319 G7V 0.9 5524 unknown 3 Metal-poor star
Kepler-169 19h 03m 60.0s +40° 55:10′ 12.186 1326 K2V 0.86 4997 unknown 5
Kepler-451 Cygnus 19h 38m 32.61s 46° 03′ 59.1″ 1340 sdB
M
0.6 29564 6 3 Three circumbinary planets orbit around the Kepler-451 binary pair.[131]
Kepler-304 Cygnus 19h 37m 46.0s +40° 33′ 27″ 1418 K 0.8 4731 unknown 4
Kepler-18 Cygnus 19h 52m 19.06s +44° 44′ 46.76″ 13.549 1430 G7V 0.97 5345 10 3
Kepler-106 Cygnus 20h 03m 27.4s +44° 20′ 15″ 12.882 1449 G1V 1 5858 4.83 4
Kepler-92 Lyra 19h 16m 21.0s +41° 33′ 47″ 11.6 1463 G1IV 1.209 5871 5.52 3
Kepler-450 Cygnus 19h 41m 56.8s +51° 00′ 49″ 11.684 1487 F 1.19 6152 unknown 3
Kepler-89 Cygnus 19h 49m 20.0s +41° 53′ 28″ 12.4 1580 F8V 1.25 6116 3.9 4 Farthest F-type main sequence star from the Sun with a multiplanetary system. One study found hints of additional planets orbiting Kepler-89.[132]
Kepler-1388 Lyra 18h 53m 20.6s +47° 10′ 28″ 1604 0.63 4098 unknown 4 -
K2-282 Pisces 00h 53m 43.6833s 07° 59′ 43.1397″ 14.04 1638 G?V 0.94 5499±109 unknown 3
Kepler-107 Cygnus 19h 48m 06.8s +48° 12′ 31″ 12.7 1714 G2V[133] 1.238 5851 4.29 4 -
Kepler-1047 Cygnus 19h 14m 35.1s +50° 47′ 20″ 1846 G2V 1.08 5754 unknown 3 -
Kepler-55 Lyra 19h 00m 40.0s +44° 01′ 35″ 16.3 1888 K 0.62 4362 unknown 5 Planet c may orbit in the inner habitable zone.
Kepler-166 Cygnus 19h 32m 38.4s +48° 52′ 52″ 1968 G 0.88 5413 unknown 3
Kepler-11 Cygnus 19h 48m 27.62s +41° 54′ 32.9″ 13.69 2150 ±20 G6V[134] 0.954 5681 7.834 6 Farthest star from the Sun with exactly six exoplanets. First system discovered with six transiting planets.[134] The planets have low densities.[135]
Kepler-1254 Draco 19h 34m 59.3s +45° 06′ 26″ 2205 0.78 4985 unknown 3 -
Kepler-289 Cygnus 19h 49m 51.7s +42° 52′ 58″ 12.9 2283 G0V 1.08 5990 0.65 3 -
Kepler-85 Cygnus 19h 23m 54.0s +45° 17′ 25″ 15.0 2495 G 0.92 5666 unknown 4
Kepler-157 Lyra 19h 24m 23.3s +38° 52′ 32″ 2523 G2V 1.02 5774 unknown 3
Kepler-342 Cygnus 19h 24m 23.3s +38° 52′ 32″ 2549 F 1.13 6175 unknown 4
Kepler-148 Cygnus 19h 19m 08.7s +46° 51′ 32″ 2580 K?V 0.83 5019.0±122.0 unknown 3
Kepler-51 Cygnus 19h 45m 55.0s +49° 56′ 16″ 15.0 2610 G?V 1 5803 unknown 4 Super-puff planets with some of the lowest densities known.[136]
Kepler-403 Cygnus 19h 19m 41.1s +46° 44′ 40″ 2741 F9IV-V 1.25 6090 unknown 3
Kepler-9 Lyra 19h 02m 17.76s +38° 24′ 03.2″ 13.91 2754 G2V 0.998 5722 3.008 3 First multiplanetary system to be discovered by the Kepler Space Telescope.[137][138]
Kepler-23 Cygnus 19h 36m 52.0s +49° 28′ 45″ 14 2790 G5V 1.11 5760 unknown 3 -
Kepler-46 Cygnus 19h 17m 05.0s +42° 36′ 15″ 15.3 2795 K?V 0.902 5155 9.9 3 -
Kepler-305 Cygnus 19h 56m 53.83s +40° 20′ 35.46″ 15.812 2833 K 0.85 4918 unknown 3 (1)
Kepler-90 Draco 18h 57m 44.0s +49° 18′ 19″ 14.0 2840 ± 40 G0V 1.13 5930 2 8 All eight exoplanets are larger than Earth and are within 1.1 AU of the parent star. Only star apart from the Sun with at least eight planets.[139] A Hill stability test shows that the system is stable.[140] Planet h orbits in the habitable zone.
Kepler-150 Lyra 19h 12m 56.2s +40° 31′ 15″ 2906 G?V 0.97 5560 unknown 5 Planet f orbits in the habitable zone.
Kepler-82 Cygnus 19h 31m 29.61s +42° 57′ 58.09″ 15.158 2949 G?V 0.91 5512 unknown 4
Kepler-154 Cygnus 19h 19m 07.3s +49° 53′ 48″ 2985 G3V 0.98 5690 unknown 5
Kepler-56 Cygnus 19h 35m 02.0s +41° 52′ 19″ 13 3060 K?III 1.32 4840 3.5 3
Kepler-350 Lyra 19h 01m 41.0s +39° 42′ 22″ 13.8 3121 F 1.03 6215 unknown 3
Kepler-603 Cygnus 19h 37m 07.4s +42° 17′ 27″ 3134 G2V 1.01 5808 unknown 3 -
Kepler-160 Lyra 19h 11m 05.65s +42° 52′ 09.5″ 13.101 3140 G2V unknown 5470 unknown 3 (1) The unconfirmed planet Kepler-160e (or KOI-456.04) is a potentially habitable planet.[141]
Kepler-401 Cygnus 19h 20m 19.9s +50° 51′ 49″ 3149 F8V 1.17 6117 unknown 3
Kepler-58 Cygnus 19h 45m 26.0s +39° 06′ 55″ 15.3 3161 G1V 1.04 5843 unknown 3
Kepler-79 Cygnus 20h 02m 04.11s +44° 22′ 53.69″ 13.914 3329 F 1.17 6187 unknown 4
Kepler-60 Cygnus 19h 15m 50.70s +42° 15′ 54.04″ 13.959 3343 G 1.04 5915 unknown 3
Kepler-122 19h 24m 26.9s +39° 56′ 57″ 3351 F 1.08 6050 unknown 4
Kepler-279 Lyra 19h 09m 34.0s +42° 11′ 42″ 13.7 3383 F 1.1 6562 unknown 3
Kepler-255 Cygnus 19h 44m 15.4s +45° 58′ 37″ 3433 G6V 0.9 5573 unknown 3
Kepler-47 Cygnus 19h 41m 11.5s +46° 55′ 13.69″ 15.178 3442 G
M
1.043 5636(A)
(B is unknown)
4.5 3 Circumbinary planets, with one of the planets orbiting in the habitable zone.[142][143][144]
Kepler-292 19h 43m 03.84s +43° 25′ 27.4″ 13.97 3446 K0V 0.85 5299 unknown 5
Kepler-27 Cygnus 19h 28m 56.82s +41° 05′ 9.15″ 15.855 3500 G5V 0.65 5400 unknown 3
Kepler-351 Lyra 19h 05m 48.6s +42° 39′ 28″ 3535 G?V 0.89 5643 unknown 3
Kepler-276 Cygnus 19h 34m 16s +39° 02′ 11″ 15.368 3734 G?V 1.1 5812 unknown 3
Kepler-24 Lyra 19h 21m 39.18s +38° 20′ 37.51″ 14.925 3910 G1V 1.03 5800 unknown 4 -
Kepler-87 Cygnus 19h 51m 40.0s +46° 57′ 54″ 15 4021 G4IV 1.1 5600 7.5 2 (2) Farthest system from the Sun with an unconfirmed exoplanet candidate.
Kepler-33 Lyra 19h 16m 18.61s +46° 00′ 18.8″ 13.988 4090 G1IV 1.164 5849 4.27 5
Kepler-282 Lyra 18h 58m 43.0s +44° 47′ 51″ 15.2 4363 G?V 0.97 5876 unknown 4
Kepler-758 Cygnus 19h 32m 20.3s +41° 08′ 08″ 4413 1.16 6228 unknown 4 Farthest system from the Sun with exactly four confirmed exoplanets.
Kepler-53 Lyra 19h 21m 51.0s +40° 33′ 45″ 16 4455 G?V 0.98 5858 unknown 3
Kepler-30 Lyra 19h 01m 08.07s +38° 56′ 50.21″ 15.403 4560 G6V 0.99 5498 unknown 3
Kepler-84 Cygnus 19h 53m 00.49s +40° 29′ 45.87″ 14.764 4700 G3IV 1 5755 unknown 5
Kepler-385 Cygnus 19h 37m 21.23s +50° 20′ 11.55″ 15.76 4900 F8V 0.99 5835 unknown 3 (4)
Kepler-31 Cygnus 19h 36m 06.0s +45° 51′ 11″ 15.5 5429 F 1.21 6340 unknown 3 The three planets are in an orbital resonance.[145]
Kepler-238 Lyra 19h 11m 35s +40° 38′ 16″ 15.084 5867 G5IV 1.06 5614 unknown 5 One of the farthest systems from the Sun with a multiplanetary system, and the farthest system where exoplanets were discovered by the Kepler space telescope.
Kepler-245 Cygnus 19h 26m 33.4s +42° 26′ 11″ 0.8 5100 unknown 4
Kepler-218 Cygnus 19h 41m 39.1s +46° 15′ 59″ unknown 5502 unknown 3
Kepler-217 Cygnus 19h 32m 09.1s +46° 16′ 39″ unknown 6171 unknown 3
Kepler-192 Lyra 19h 11m 40.3s +45° 35′ 34″ unknown 5479 unknown 3
Kepler-191 Cygnus 19h 24m 44.0s +45° 19′ 23″ 0.85 5282 unknown 3
Kepler-176 Cygnus 19h 38m 40.3s +43° 51′ 12″ unknown 5232 unknown 4
Kepler-431 Lyra 18h 44m 26.9s +43° 13′ 40″ 1.071 6004 unknown 3
Kepler-338 Lyra 18h 51m 54.9s +40° 47′ 04″ 1.1 5923 unknown 4
Kepler-197 Cygnus 19h 40m 54.3s +50° 33′ 32″ unknown 6004 unknown 4
Kepler-247 Lyra 19h 14m 34.2s +43° 02′ 21″ 0.884 5094 unknown 3
Kepler-104 Lyra 19h 10m 25.1s +42° 10′ 00″ 0.81 5711 unknown 3 -
Kepler-126 Cygnus 19h 17m 23.4s +44° 12′ 31″ unknown 6239 unknown 3 -
Kepler-127 Lyra 19h 00m 45.6s +46° 01′ 41″ unknown 6106 unknown 3 -
Kepler-130 Lyra 19h 13m 48.2s +40° 14′ 43″ 1 5884 unknown 3 -
Kepler-164 Lyra 19h 11m 07.4s +47° 37′ 48″ 1.11 5888 unknown 3 -
Kepler-171 Cygnus 19h 47m 05.3s +41° 45′ 20″ unknown 5642 unknown 3 -
Kepler-172 Lyra 19h 47m 05.3s +41° 45′ 20″ 0.86 5526 unknown 4 -
Kepler-149 Lyra 19h 03m 24.9s +38° 23′ 03″ unknown 5381 unknown 3
Kepler-142 Cygnus 19h 40m 28.5s +48° 28′ 53″ 0.99 5790 unknown 3
Kepler-124 Draco 19h 07m 00.7s +49° 03′ 54″ unknown 4984 unknown 3
Kepler-402 Lyra 19h 13m 28.9s +43° 21′ 17″ unknown 6090 unknown 4
Kepler-399 Cygnus 19h 58m 00.4s +40° 40′ 15″ unknown 5502 unknown 3
Kepler-374 Cygnus 19h 36m 33.1s +42° 22′ 14″ 0.84 5977 unknown 3
Kepler-372 Cygnus 19h 25m 01.5s +49° 15′ 32″ 1.15 6509 unknown 3
Kepler-363 Lyra 18h 52m 46.1s +41° 18′ 19″ 1.23 5593 unknown 3
Kepler-359 Cygnus 19h 33m 10.5s +42° 11′ 47″ 1.07 6248 unknown 3
Kepler-357 Cygnus 19h 24m 58.3s +44° 00′ 31″ 0.78 5036 unknown 3
Kepler-354 Lyra 19h 03m 00.4s +41° 20′ 08″ 0.65 4648 unknown 3
Kepler-206 Lyra 19h 26m 32.3s +41° 50′ 02″ 0.94 5764 unknown 3
Kepler-203 Cygnus 19h 01m 23.3s +41° 45′ 43″ 0.98 5821 unknown 3
Kepler-194 Cygnus 19h 27m 53.1s +47° 51′ 51″ unknown 6089 unknown 3
Kepler-184 Lyra 19h 27m 48.5s +43° 04′ 29″ unknown 5788 unknown 3
Kepler-178 Lyra 19h 08m 24.3s +46° 53′ 47″ unknown 5676 unknown 3
Kepler-336 Lyra 19h 20m 57.0s +41° 19′ 53″ 0.89 5867 unknown 3
Kepler-334 Lyra 19h 08m 33.8s +47° 06′ 55″ 1 5828 unknown 3
Kepler-332 Lyra 19h 06m 39.1s +47° 24′ 49″ 0.8 4955 unknown 3
Kepler-331 Lyra 19h 27m 20.2s +39° 18′ 26″ 0.51 4347 unknown 3
Kepler-327 Cygnus 19h 30m 34.2s 44° 05′ 16″ 0.55 3799 unknown 3
Kepler-326 Cygnus 19h 37m 18.1s +46° 00′ 08″ 0.98 5105 unknown 3
Kepler-325 Cygnus 19h 19m 20.5s +49° 49′ 32″ 0.87 5752 unknown 3

Stars orbited by both planets and brown dwarfs

[edit]

Stars orbited by objects on both sides of the ~13 Jupiter mass dividing line.

See also

[edit]


Notes

[edit]
  1. ^ Barnard's Star at closer distance has a candidate four-planet system, of which one planet has been confirmed so far.[2]

References

[edit]
  1. ^ Schneider, Jean (6 December 2016). "Interactive Extra-solar Planets Catalog". Extrasolar Planets Encyclopaedia. Archived from the original on 2016-12-09. Retrieved 2016-12-06.
  2. ^ González Hernández, J. I.; et al. (October 2024). "A sub-Earth-mass planet orbiting Barnard's star". Astronomy & Astrophysics. 690: A79. arXiv:2410.00569. Bibcode:2024A&A...690A..79G. doi:10.1051/0004-6361/202451311. A79.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  3. ^ Beaulieu, Jean-Philippe; Bennett, D. P.; Batista, Virginie; Fukui, A. (January 2016). "Revisiting the microlensing event OGLE 2012-BLG-0026: A solar mass star with two cold giant planets". researchgate.net.
  4. ^ Brewer, John M.; Wang, Songhu; Fischer, Debra A.; Foreman-Mackey, Daniel (2018-10-24). "Compact multi-planet systems are more common around metal poor hosts". The Astrophysical Journal. 867 (1). L3. arXiv:1810.10009. Bibcode:2018ApJ...867L...3B. doi:10.3847/2041-8213/aae710. S2CID 67832557.
  5. ^ Samus, N. N.; Durlevich, O. V.; et al. (2009). "VizieR online data catalog: General catalogue of variable stars (Samus+ 2007–2013)". VizieR On-line Data Catalog: B/GCVS. Originally Published in: 2009yCat....102025S. 1. Bibcode:2009yCat....102025S.
  6. ^ Bessell, M. S. (1991). "The late-M dwarfs". The Astronomical Journal. 101: 662. Bibcode:1991AJ....101..662B. doi:10.1086/115714.
  7. ^ Mascareño, A. Suárez; Faria, J. P.; Figueira, P.; Lovis, C.; Damasso, M.; Hernández, J. I. González; Rebolo, R.; Cristiani, S.; Pepe, F.; Santos, N. C.; Osorio, M. R. Zapatero; Adibekyan, V.; Hojjatpanah, S.; Sozzetti, A.; Murgas, F.; Abreu, M.; Affolter, M.; Alibert, Y.; Aliverti, M.; Allart, R.; Prieto, C. Allende; Alves, D.; Amate, M.; Avila, G.; Baldini, V.; Bandi, T.; Barros, S. C. C.; Bianco, A.; Benz, W.; Bouchy, F.; Broeng, C.; Cabral, A.; Calderone, G.; Cirami, R.; Coelho, J.; Conconi, P.; Coretti, I.; Cumani, C.; Cupani, G.; D’Odorico, V.; Deiries, S.; Delabre, B.; Marcantonio, P. Di; Dumusque, X.; Ehrenreich, D.; Fragoso, A.; Genolet, L.; Genoni, M.; Santos, R. Génova; Hughes, I.; Iwert, O.; Kerber, F.; Knusdstrup, J.; Landoni, M.; Lavie, B.; Lillo-Box, J.; Lizon, J.; Curto, G. Lo; Maire, C.; Manescau, A.; Martins, C. J. a. P.; Mégevand, D.; Mehner, A.; Micela, G.; Modigliani, A.; Molaro, P.; Monteiro, M. A.; Monteiro, M. J. P. F. G.; Moschetti, M.; Mueller, E.; Nunes, N. J.; Oggioni, L.; Oliveira, A.; Pallé, E.; Pariani, G.; Pasquini, L.; Poretti, E.; Rasilla, J. L.; Redaelli, E.; Riva, M.; Tschudi, S. Santana; Santin, P.; Santos, P.; Segovia, A.; Sosnowska, D.; Sousa, S.; Spanò, P.; Tenegi, F.; Udry, S.; Zanutta, A.; Zerbi, F. (1 July 2020). "Revisiting Proxima with ESPRESSO". Astronomy & Astrophysics. 639: A77. arXiv:2005.12114. Bibcode:2020A&A...639A..77S. doi:10.1051/0004-6361/202037745. ISSN 0004-6361. S2CID 218869742. Archived from the original on 27 June 2022. Retrieved 9 May 2022.
  8. ^ Del Genio, Anthony D.; Way, Michael J.; Amundsen, David S.; Aleinov, Igor; Kelley, Maxwell; Kiang, Nancy Y.; Clune, Thomas L. (January 2019). "Habitable Climate Scenarios for Proxima Centauri b with a Dynamic Ocean". Astrobiology. 19 (1): 99–125. arXiv:1709.02051. Bibcode:2019AsBio..19...99D. doi:10.1089/ast.2017.1760. ISSN 1531-1074. PMID 30183335. S2CID 52165056.
  9. ^ Artigau, Étienne; Cadieux, Charles; Cook, Neil J.; Doyon, René; Vandal, Thomas; et al. (June 23, 2022). "Line-by-line velocity measurements, an outlier-resistant method for precision velocimetry". The Astronomical Journal. 164:84 (3) (published August 8, 2022): 18pp. arXiv:2207.13524. Bibcode:2022AJ....164...84A. doi:10.3847/1538-3881/ac7ce6.
  10. ^ Oja, T. (August 1985), "Photoelectric photometry of stars near the north Galactic pole. II", Astronomy and Astrophysics Supplement Series, 61: 331–339, Bibcode:1985A&AS...61..331O
  11. ^ Dickinson, David (2015-12-23). "14 Red Dwarf Stars to View with Backyard Telescopes". Universe Today. Archived from the original on 2021-02-11. Retrieved 2016-12-04.
  12. ^ Croswell, Ken (July 2002). "The Brightest Red Dwarf". KenCroswell.com. Archived from the original on 2018-10-20. Retrieved 2016-12-04.
  13. ^ Jeffers, S. V.; Dreizler, S.; Barnes, J. R.; Haswell, C. A.; Nelson, R. P.; Rodríguez, E.; López-González, M. J.; Morales, N.; Luque, R.; et al. (2020), "A multiple planet system of super-Earths orbiting the brightest red dwarf star GJ887", Science, 368 (6498): 1477–1481, arXiv:2006.16372, Bibcode:2020Sci...368.1477J, doi:10.1126/science.aaz0795, PMID 32587019, S2CID 220075207
  14. ^ Pozuelos, Francisco J.; Suárez, Juan C.; de Elía, Gonzalo C.; Berdiñas, Zaira M.; Bonfanti, Andrea; Dugaro, Agustín; et al. (2020). "GJ 273: On the formation, dynamical evolution, and habitability of a planetary system hosted by an M dwarf at 3.75 parsec". Astronomy & Astrophysics. 641: A23. arXiv:2006.09403. Bibcode:2020A&A...641A..23P. doi:10.1051/0004-6361/202038047. S2CID 219721292. GJ 273 is a planetary system orbiting an M dwarf only 3.75 pc away, composed of two confirmed planets, GJ 273b and GJ 273c, and two promising candidates, GJ 273d and GJ 273e ... the system remained stable only for values of inclinations ranging from 90◦ to ~72◦
  15. ^ Astudillo-Defru, Nicola; Forveille, Thierry; Bonfils, Xavier; Ségransan, Damien; Bouchy, François; Delfosse, Xavier; et al. (2017). "The HARPS search for southern extra-solar planets. XLI. A dozen planets around the M dwarfs GJ 3138, GJ 3323, GJ 273, GJ 628, and GJ 3293". Astronomy and Astrophysics. 602. A88. arXiv:1703.05386. Bibcode:2017A&A...602A..88A. doi:10.1051/0004-6361/201630153. S2CID 119418595. Archived from the original on 2022-09-28. Retrieved 2022-02-25.
  16. ^ Samus, N. N.; Durlevich, O. V.; et al. (2009). "VizieR Online Data Catalog: General Catalogue of Variable Stars (Samus+ 2007-2013)". VizieR On-line Data Catalog: B/GCVS. Originally Published in: 2009yCat....102025S. 1. Bibcode:2009yCat....102025S.
  17. ^ Dreizler, S.; Jeffers, S. V.; Rodríguez, E.; Zechmeister, M.; Barnes, J.R.; Haswell, C.A.; Coleman, G. A. L.; Lalitha, S.; Hidalgo Soto, D.; Strachan, J.B.P.; Hambsch, F-J.; López-González, M. J.; Morales, N.; Rodríguez López, C.; Berdiñas, Z. M.; Ribas, I.; Pallé, E.; Reiners, Ansgar; Anglada-Escudé, G. (2019-08-13). "Red Dots: A temperate 1.5 Earth-mass planet in a compact multi-terrestrial planet system around GJ1061". Monthly Notices of the Royal Astronomical Society. arXiv:1908.04717. doi:10.1093/mnras/staa248. S2CID 199551874.
  18. ^ Caballero, J. A.; Reiners, Ansgar; Ribas, I.; Dreizler, S.; Zechmeister, M.; et al. (12 June 2019). "The CARMENES search for exoplanets around M dwarfs. Two temperate Earth-mass planet candidates around Teegarden's Star". Astronomy & Astrophysics. 627: A49. arXiv:1906.07196. Bibcode:2019A&A...627A..49Z. doi:10.1051/0004-6361/201935460. ISSN 0004-6361. S2CID 189999121.
  19. ^ Davison, Cassy L.; White, Russel J.; Henry, Todd J.; Riedel, Adric R.; Jao, Wei-Chun; Bailey III, John I.; Quinn, Samuel N.; Justin R., Cantrell; John P., Subasavage; Jen G., Winters (2015). "A 3D Search for Companions to 12 Nearby M-Dwarfs". The Astronomical Journal. 149 (3): 106. arXiv:1501.05012. Bibcode:2015AJ....149..106D. doi:10.1088/0004-6256/149/3/106. S2CID 9719725.
  20. ^ Stuart Gary (17 December 2015). "Potentially habitable super-Earth discovered orbiting star 14 light years from Earth". ABC News (Australia). Archived from the original on 2017-06-09. Retrieved 2022-05-10.
  21. ^ Kane, Stephen R.; et al. (February 2017), "Characterization of the Wolf 1061 Planetary System", The Astrophysical Journal, 835 (2): 9, arXiv:1612.09324, Bibcode:2017ApJ...835..200K, doi:10.3847/1538-4357/835/2/200, S2CID 30738573, 200.
  22. ^ Jones, Barrie W.; et al. (2005). "Prospects for Habitable "Earths" in Known Exoplanetary Systems". The Astrophysical Journal. 622 (2): 1091–1101. arXiv:astro-ph/0503178. Bibcode:2005ApJ...622.1091J. doi:10.1086/428108.
  23. ^ Wyatt, M. C.; et al. (2012). "Herschel imaging of 61 Vir: implications for the prevalence of debris in low-mass planetary systems". Monthly Notices of the Royal Astronomical Society. 424 (2): 1206. arXiv:1206.2370. Bibcode:2012MNRAS.424.1206W. doi:10.1111/j.1365-2966.2012.21298.x. S2CID 54056835.
  24. ^ Kennedy, G. M.; Matra, L.; Marmier, M.; Greaves, J. S.; Wyatt, M. C.; Bryden, G.; Holland, W.; Lovis, C.; Matthews, B. C.; Pepe, F.; Sibthorpe, B.; Udry, S. (2015). "Kuiper belt structure around nearby super-Earth host stars". Monthly Notices of the Royal Astronomical Society. 449 (3): 3121. arXiv:1503.02073. Bibcode:2015MNRAS.449.3121K. doi:10.1093/mnras/stv511. S2CID 53638901.
  25. ^ "Reanalysis of data suggests 'habitable' planet GJ 581d really could exist". Astronomy Now. 9 March 2015. Archived from the original on 20 May 2015. Retrieved 27 May 2015.
  26. ^ Anglada-Escudé, Guillem; Arriagada, Pamela; Vogt, Steven S.; Rivera, Eugenio J.; Butler, R. Paul; Crane, Jeffrey D.; Shectman, Stephen A.; Thompson, Ian B.; Minniti, Dante; Haghighipour, Nader; Carter, Brad D.; Tinney, C. G.; Wittenmyer, Robert A.; Bailey, Jeremy A.; O'Toole, Simon J.; Jones, Hugh R. A.; Jenkins, James S. (2012). "A Planetary System around the nearby M Dwarf GJ 667C with At Least One Super-Earth in Its Habitable Zone". The Astrophysical Journal Letters. 751 (1). L16. arXiv:1202.0446. Bibcode:2012ApJ...751L..16A. doi:10.1088/2041-8205/751/1/L16. S2CID 16531923.
  27. ^ Anglada-Escudé, Guillem; et al. (2013-06-07). "A dynamically-packed planetary system around GJ 667C with three super-Earths in its habitable zone" (PDF). Astronomy & Astrophysics. 556: A126. arXiv:1306.6074. Bibcode:2013A&A...556A.126A. doi:10.1051/0004-6361/201321331. S2CID 14559800. Archived from the original (PDF) on 2013-06-30. Retrieved 2013-06-25.
  28. ^ Makarov, Valeri V.; Berghea, Ciprian (2013). "Dynamical Evolution and Spin-Orbit Resonances of Potentially Habitable Exoplanets. The Case of Gj 667C". The Astrophysical Journal. 780 (2): 124. arXiv:1311.4831. doi:10.1088/0004-637X/780/2/124. S2CID 118700510.
  29. ^ Vogt, Steven S.; et al. (November 2015). "Six Planets Orbiting HD 219134". The Astrophysical Journal. 814 (1): 12. arXiv:1509.07912. Bibcode:2015ApJ...814...12V. doi:10.1088/0004-637X/814/1/12. S2CID 45438051.
  30. ^ Dietrich, Jeremy; Apai, Dániel; Malhotra, Renu (2022). "An Integrative Analysis of the HD 219134 Planetary System and the Inner solar system: Extending DYNAMITE with Enhanced Orbital Dynamical Stability Criteria". The Astronomical Journal. 163 (2): 88. arXiv:2112.05337. Bibcode:2022AJ....163...88D. doi:10.3847/1538-3881/ac4166. S2CID 245117944.
  31. ^ Wyatt, M. C.; et al. (2012). "Herschel imaging of 61 Vir: implications for the prevalence of debris in low-mass planetary systems". MNRAS. 424 (2): 1206–1223. arXiv:1206.2370. Bibcode:2012MNRAS.424.1206W. doi:10.1111/j.1365-2966.2012.21298.x. S2CID 54056835.
  32. ^ Rosenthal, Lee J.; Fulton, Benjamin J.; Hirsch, Lea A.; Isaacson, Howard T.; Howard, Andrew W.; Dedrick, Cayla M.; Sherstyuk, Ilya A.; Blunt, Sarah C.; Petigura, Erik A.; Knutson, Heather A.; Behmard, Aida; Chontos, Ashley; Crepp, Justin R.; Crossfield, Ian J. M.; Dalba, Paul A.; Fischer, Debra A.; Henry, Gregory W.; Kane, Stephen R.; Kosiarek, Molly; Marcy, Geoffrey W.; Rubenzahl, Ryan A.; Weiss, Lauren M.; Wright, Jason T. (2021). "The California Legacy Survey. I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades". The Astrophysical Journal Supplement Series. 255 (1): 8. arXiv:2105.11583. Bibcode:2021ApJS..255....8R. doi:10.3847/1538-4365/abe23c. S2CID 235186973.
  33. ^ Kennedy, G. M.; et al. (June 2018). "Kuiper belt analogues in nearby M-type planet-host systems". Monthly Notices of the Royal Astronomical Society. 476 (4): 4584–4591. arXiv:1803.02832. Bibcode:2018MNRAS.476.4584K. doi:10.1093/mnras/sty492.
  34. ^ Falconer, Rebecca, Newly uncovered super-Earth 31 light-years away may be habitable Archived 2019-12-18 at the Wayback Machine, Axios, August 1, 2019
  35. ^ Reddy, Francis; Center, NASA’s Goddard Space Flight (2019-07-31). "TESS Discovers Habitable Zone Planet in GJ 357 System". SciTechDaily. Archived from the original on 2019-08-01. Retrieved 2019-08-01.
  36. ^ "Potentially habitable 'super-Earth' discovered just 31 light-years away". NBC News. 31 July 2019. Archived from the original on 2019-07-31. Retrieved 2019-08-01.
  37. ^ Garner, Rob (2019-07-30). "NASA's TESS Helps Find Intriguing New World". NASA. Archived from the original on 2019-08-01. Retrieved 2019-08-01.
  38. ^ Demangeon, Oliver D. S.; Zapatero Osorio, M. R.; Alibert, Y.; Barros, S. C. C.; Adibekyan, V.; Tabernero, H. M.; et al. (July 2021). "A warm terrestrial planet with half the mass of Venus transiting a nearby star" (PDF). Astronomy & Astrophysics. 653: 38. arXiv:2108.03323. Bibcode:2021A&A...653A..41D. doi:10.1051/0004-6361/202140728. S2CID 236957385. Archived (PDF) from the original on 2021-11-13. Retrieved 2022-03-03.
  39. ^ Dedrick, Cayla M.; Fulton, Benjamin J.; Knutson, Heather A.; Howard, Andrew W.; Beatty, Thomas G.; Cargile, Phillip A.; Gaudi, B. Scott; Hirsch, Lea A.; Kuhn, Rudolf B.; Lund, Michael B.; James, David J.; Kosiarek, Molly R.; Pepper, Joshua; Petigura, Erik A.; Rodriguez, Joseph E. (January 2021). "Two Planets Straddling the Habitable Zone of the Nearby K Dwarf Gl 414A". The Astronomical Journal. 161 (2): 86. arXiv:2009.06503. Bibcode:2021AJ....161...86D. doi:10.3847/1538-3881/abd0ef. ISSN 1538-3881.
  40. ^ "GJ 414 Overview". NASA Exoplanet Archive. Archived from the original on December 9, 2023. Retrieved January 4, 2024.
  41. ^ Schweitzer, A.; et al. (May 2019). "The CARMENES search for exoplanets around M dwarfs. Different roads to radii and masses of the target stars". Astronomy & Astrophysics. 625: 16. arXiv:1904.03231. Bibcode:2019A&A...625A..68S. doi:10.1051/0004-6361/201834965. S2CID 102351979. A68.
  42. ^ Stephenson, C. B. (July 1986), "Dwarf K and M stars of high proper motion found in a hemispheric survey", The Astronomical Journal, 92: 139–165, Bibcode:1986AJ.....92..139S, doi:10.1086/114146.
  43. ^ Sutherland, Paul (March 5, 2014). "Habitable planets common around red dwarf stars". Sen. Sen Corporation Ltd. Archived from the original on November 12, 2020. Retrieved July 28, 2022.
  44. ^ Tuomi, Mikko; et al. (2014), "Bayesian search for low-mass planets around nearby M dwarfs – estimates for occurrence rate based on global detectability statistics", Monthly Notices of the Royal Astronomical Society, 441 (2): 1545–1569, arXiv:1403.0430, Bibcode:2014MNRAS.441.1545T, doi:10.1093/mnras/stu358, S2CID 32965505.
  45. ^ Lovis, Christophe; et al. (2006). "An extrasolar planetary system with three Neptune-mass planets" (PDF). Nature. 441 (7091): 305–309. arXiv:astro-ph/0703024. Bibcode:2006Natur.441..305L. doi:10.1038/nature04828. PMID 16710412. S2CID 4343578. Archived from the original (PDF) on 2016-03-03. Retrieved 2022-02-24.
  46. ^ Díaz, R. F.; et al. (2016). "The HARPS search for southern extra-solar planets. XXXVIII. Bayesian re-analysis of three systems. New super-Earths, unconfirmed signals, and magnetic cycles". Astronomy and Astrophysics. 585. A134. arXiv:1510.06446. Bibcode:2016A&A...585A.134D. doi:10.1051/0004-6361/201526729. S2CID 118531921. Archived from the original on 2021-02-24. Retrieved 2022-02-24.
  47. ^ Tuomi, Mikko; Anglada-Escudé, Guillem; Gerlach, Enrico; Jones, Hugh R. A.; Reiners, Ansgar; Rivera, Eugenio J.; Vogt, Steven S.; Butler, R. Paul (17 December 2012). "Habitable-zone super-Earth candidate in a six-planet system around the K2.5V star HD 40307". Astronomy & Astrophysics. 549: A48. arXiv:1211.1617. Bibcode:2013A&A...549A..48T. doi:10.1051/0004-6361/201220268. S2CID 7424216.
  48. ^ R. P. Butler; Marcy, Geoffrey W. (1996). "A Planet Orbiting 47 Ursae Majoris". Astrophysical Journal Letters. 464 (2): L153–L156. Bibcode:1996ApJ...464L.153B. doi:10.1086/310102.
  49. ^ P. C. Gregory; D. A. Fischer (2010). "A Bayesian periodogram finds evidence for three planets in 47 Ursae Majoris". Monthly Notices of the Royal Astronomical Society. 403 (2): 731–747. arXiv:1003.5549. Bibcode:2010MNRAS.403..731G. doi:10.1111/j.1365-2966.2009.16233.x. S2CID 16722873.
  50. ^ Takeda, Genya; et al. (2007). "Structure and Evolution of Nearby Stars with Planets. II. Physical Properties of ~1000 Cool Stars from the SPOCS Catalog". The Astrophysical Journal Supplement Series. 168 (2): 297–318. arXiv:astro-ph/0607235. Bibcode:2007ApJS..168..297T. doi:10.1086/509763. S2CID 18775378.
  51. ^ Sousa, S. G.; et al. (August 2008). "Spectroscopic parameters for 451 stars in the HARPS GTO planet search program. Stellar [Fe/H] and the frequency of exo-Neptunes". Astronomy and Astrophysics. 487 (1): 373–381. arXiv:0805.4826. Bibcode:2008A&A...487..373S. doi:10.1051/0004-6361:200809698. S2CID 18173201.
  52. ^ Lovis, C.; et al. (2011). "The HARPS search for southern extra-solar planets. XXXI. Magnetic activity cycles in solar-type stars: statistics and impact on precise radial velocities". arXiv:1107.5325 [astro-ph.SR].
  53. ^ Dittmann, Jason A.; Irwin, Jonathan M.; Charbonneau, David; Bonfils, Xavier; Astudillo-Defru, Nicola; Haywood, Raphaëlle D.; et al. (2017). "A temperate rocky super-Earth transiting a nearby cool star". Nature. 544 (7650): 333–336. arXiv:1704.05556. Bibcode:2017Natur.544..333D. doi:10.1038/nature22055. PMID 28426003. S2CID 2718408.
  54. ^ Overbye, Dennis (19 April 2017). "A new exoplanet may be most promising yet in search for life". New York Times. Archived from the original on 11 November 2020. Retrieved 20 April 2017.
  55. ^ Méndez, Abel (August 29, 2012). "A Hot Potential Habitable Exoplanet around Gliese 163". University of Puerto Rico at Arecibo (Planetary Habitability Laboratory). Archived from the original on October 21, 2019. Retrieved September 20, 2012.
  56. ^ Redd, Nola Taylor (September 20, 2012). "Newfound Alien Planet a Top Contender to Host Life". Space.com. Archived from the original on December 26, 2019. Retrieved September 20, 2012.
  57. ^ "Simbad - Object view". simbad.cds.unistra.fr. Retrieved 2024-01-04.
  58. ^ Beard, Corey; Robertson, Paul; Kanodia, Shubham; Lubin, Jack; Cañas, Caleb I.; Gupta, Arvind F.; Holcomb, Rae; Jones, Sinclaire; Libby-Roberts, Jessica E.; Lin, Andrea S. J.; Mahadevan, Suvrath; Stefánsson, Guđmundur; Bender, Chad F.; Blake, Cullen H.; Cochran, William D. (2022-08-30). "GJ 3929: High-precision Photometric and Doppler Characterization of an Exo-Venus and Its Hot, Mini-Neptune-mass Companion". The Astrophysical Journal. 936 (1): 55. arXiv:2207.10672. Bibcode:2022ApJ...936...55B. doi:10.3847/1538-4357/ac8480. ISSN 0004-637X.
  59. ^ Anglada-Escudé, Guillem; Tuomi, Mikko (2012). "A planetary system with gas giants and super-Earths around the nearby M dwarf GJ 676A. Optimizing data analysis techniques for the detection of multi-planetary systems" (PDF). Astronomy. 548: A58. arXiv:1206.7118. Bibcode:2012A&A...548A..58A. doi:10.1051/0004-6361/201219910. S2CID 17115882.[permanent dead link]
  60. ^ Fulton, Benjamin J.; et al. (2015). "Three Super-Earths Orbiting HD 7924". The Astrophysical Journal. 805 (2): 175. arXiv:1504.06629. Bibcode:2015ApJ...805..175F. doi:10.1088/0004-637X/805/2/175. S2CID 7969255.
  61. ^ Damasso, M.; et al. (2020), "A precise architecture characterization of the π Mensae planetary system", Astronomy & Astrophysics, 642: A31, arXiv:2007.06410, Bibcode:2020A&A...642A..31D, doi:10.1051/0004-6361/202038416, S2CID 220496034
  62. ^ Astudillo-Defru, Nicola; Forveille, Thierry; Bonfils, Xavier; Ségransan, Damien; Bouchy, François; Delfosse, Xavier; et al. (2017). "The HARPS search for southern extra-solar planets. XLI. A dozen planets around the M dwarfs GJ 3138, GJ 3323, GJ 273, GJ 628, and GJ 3293". Astronomy and Astrophysics. 602. A88. arXiv:1703.05386. Bibcode:2017A&A...602A..88A. doi:10.1051/0004-6361/201630153. S2CID 119418595. Archived from the original on 2022-09-28. Retrieved 2022-02-25.
  63. ^ "Planet LHS 1678 D". 2024.
  64. ^ Kane, Stephen R.; Fetherolf, Tara; et al. (March 2024). "A Perfect Tidal Storm: HD 104067 Planetary Architecture Creating an Incandescent World". The Astronomical Journal. 167 (5): 239. arXiv:2403.17062. Bibcode:2024AJ....167..239K. doi:10.3847/1538-3881/ad3820.
  65. ^ Koerner, D. W.; et al. (February 2010), "New Debris Disk Candidates Around 49 Nearby Stars" (PDF), The Astrophysical Journal Letters, 710 (1): L26–L29, Bibcode:2010ApJ...710L..26K, doi:10.1088/2041-8205/710/1/L26, S2CID 122844702, archived (PDF) from the original on 2020-09-15, retrieved 2022-02-25.
  66. ^ a b Fulton, Benjamin J.; Howard, Andrew W.; Weiss, Lauren M.; Sinukoff, Evan; Petigura, Erik A.; Isaacson, Howard; Hirsch, Lea; Marcy, Geoffrey W.; Henry, Gregory W.; Grunblatt, Samuel K.; Huber, Daniel; Kaspar von Braun; Boyajian, Tabetha S.; Kane, Stephen R.; Wittrock, Justin; Horch, Elliott P.; Ciardi, David R.; Howell, Steve B.; Wright, Jason T.; Ford, Eric B. (2016). "Three Temperate Neptunes Orbiting Nearby Stars". The Astrophysical Journal. 830 (1): 46. arXiv:1607.00007. Bibcode:2016ApJ...830...46F. doi:10.3847/0004-637X/830/1/46. S2CID 36666883.
  67. ^ Unger, N.; et al. (October 2021). "The HARPS search for southern extra-solar planets". Astronomy & Astrophysics. 654: A104. arXiv:2108.10198. Bibcode:2021A&A...654A.104U. doi:10.1051/0004-6361/202141351. eISSN 1432-0746. ISSN 0004-6361.
  68. ^ Mayor, M.; Marmier, M.; Lovis, C.; Udry, S.; Ségransan, D.; Pepe, F.; Benz, W.; Bertaux, J.-L.; Bouchy, F.; Dumusque, X.; Lo Curto, G.; Mordasini, C.; Queloz, D.; Santos, N. C. (September 13, 2011), The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets, arXiv:1109.2497
  69. ^ a b Hara, N. C.; Bouchy, F.; Stalport, M.; Boisse, I.; Rodrigues, J.; Delisle, J. B.; Santerne, A.; Henry, G. W.; Arnold, L.; Astudillo-Defru, N.; Borgniet, S.; Bonfils, X.; Bourrier, V.; Brugger, B.; Courcol, B.; Dalal, S.; Deleuil, M.; Delfosse, X.; Demangeon, O.; Díaz, R. F.; Dumusque, X.; Forveille, T.; Hébrard, G.; Hobson, M. J.; Kiefer, F.; Lopez, T.; Mignon, L.; Mousis, O.; Moutou, C.; Pepe, F.; Rey, J.; Santos, N. C.; Ségransan, D.; Udry, S.; Wilson, P. A. (March 10, 2020). "The SOPHIE search for northern extrasolar planets XVI. HD 158259: A compact planetary system in a near-3:2 mean motion resonance chain". Astronomy & Astrophysics. 636 (1): L6. arXiv:1911.13296. Bibcode:2020A&A...636L...6H. doi:10.1051/0004-6361/201937254. S2CID 208512859.
  70. ^ Gray, R. O.; et al. (July 2006), "Contributions to the Nearby Stars (NStars) Project: spectroscopy of stars earlier than M0 within 40 pc-The Southern Sample", The Astronomical Journal, 132 (1): 161–170, arXiv:astro-ph/0603770, Bibcode:2006AJ....132..161G, doi:10.1086/504637, S2CID 119476992
  71. ^ Lee, Man Hoi; et al. (2006). "On the 2:1 Orbital Resonance in the HD 82943 Planetary System". The Astrophysical Journal. 641 (2): 1178–1187. arXiv:astro-ph/0512551. Bibcode:2006ApJ...641.1178L. doi:10.1086/500566. S2CID 119432579.
  72. ^ "The Harsh Destiny of a Planet?" (Press release). Garching, Germany: European Southern Observatory. May 9, 2001. Archived from the original on September 21, 2020. Retrieved December 30, 2012.
  73. ^ Rodriguez, Joseph E; Vanderburg, Andrew; Eastman, Jason D; Mann, Andrew W; Crossfield, Ian J. M; Ciardi, David R; Latham, David W; Quinn, Samuel N (2018). "A System of Three Super Earths Transiting the Late K-Dwarf GJ 9827 at 30 pc". The Astronomical Journal. 155 (2): 72. arXiv:1709.01957. Bibcode:2018AJ....155...72R. doi:10.3847/1538-3881/aaa292. S2CID 55459523.
  74. ^ Andreolo, Claire; Cofield, Calla; Kazmierczak, Jeanette (6 January 2020). "NASA Planet Hunter Finds Earth-Size Habitable-Zone World". NASA. Archived from the original on 14 April 2020. Retrieved 6 January 2020.
  75. ^ Garner, Rob (6 January 2020). "NASA Planet Hunter Finds Earth-Size Habitable-Zone World". NASA. Archived from the original on 5 April 2020. Retrieved 6 January 2020.
  76. ^ Wall, Mike (6 January 2020). "NASA's TESS Planet Hunter Finds Its 1st Earth-Size World in 'Habitable Zone'". Space.com. Archived from the original on 8 April 2020. Retrieved 6 January 2020.
  77. ^ Vanderburg, Andrew; et al. (2019). "TESS Spots a Compact System of Super-Earths around the Naked-Eye Star HR 858". The Astrophysical Journal. 881 (1): L19. arXiv:1905.05193. Bibcode:2019ApJ...881L..19V. doi:10.3847/2041-8213/ab322d. S2CID 153311715.
  78. ^ Vogt, Steven S.; et al. (2005). "Five New Multicomponent Planetary Systems" (PDF). The Astrophysical Journal. 632 (1): 638–658. Bibcode:2005ApJ...632..638V. doi:10.1086/432901. S2CID 16509245. Archived (PDF) from the original on 2018-07-22. Retrieved 2020-12-11.
  79. ^ Udry, S.; Dumusque, X.; Lovis, C.; Segransan, D.; Diaz, R. F.; Benz, W.; Bouchy, F.; Coffinet, A.; Lo Curto, G.; Mayor, M.; Mordasini, C.; Motalebi, F.; Pepe, F.; Queloz, D.; Santos, N. C.; Wyttenbach, A.; Alonso, R.; Collier Cameron, A.; Deleuil, M.; Figueira, P.; Gillon, M.; Moutou, C.; Pollacco, D.; Pompei, E. (2019), "The HARPS search for southern extra-solar planets. XLII. Eight HARPS multi-planet systems hosting 20 super-Earth and Neptune-mass companions", Astronomy & Astrophysics, A37: 622, arXiv:1705.05153, Bibcode:2019A&A...622A..37U, doi:10.1051/0004-6361/201731173, S2CID 119095511
  80. ^ Mayor, M.; Marmier, M.; Lovis, C.; Udry, S.; Ségransan, D.; Pepe, F.; Benz, W.; Bertaux, J.-L.; Bouchy, F.; Dumusque, G.; Curto, Lo; Mordasini, C.; Queloz, D.; Santos, N. C.; et al. (2011). "The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets". arXiv:1109.2497 [astro-ph].
  81. ^ Hébrard, Guillaume; Arnold, Luc; Forveille, Thierry; Correia, Alexandre C. M.; Laskar, Jacques; Bonfils, Xavier; Boisse, Isabelle; Díaz, Rodrigo F.; Hagelberg, Janis; Sahlmann, Johannes; Santos, Nuno C.; et al. (2016-04-01). "The SOPHIE search for northern extrasolar planets. X. Detection and characterization of giant planets by the dozen". Astronomy and Astrophysics. 588: A145. arXiv:1602.04622. Bibcode:2016A&A...588A.145H. doi:10.1051/0004-6361/201527585. ISSN 0004-6361. S2CID 55138055. Archived from the original on 2019-04-10. Retrieved 2022-02-26.
  82. ^ Philip S. Muirhead; John Asher Johnson; Kevin Apps; Joshua A. Carter; Timothy D. Morton; Daniel C. Fabrycky; J. Sebastian Pineda; Michael Bottom; Barbara Rojas-Ayala; Everett Schlawin; Katherine Hamren; Kevin R. Covey; Justin R. Crepp; Keivan G. Stassun; Joshua Pepper; Leslie Hebb; Evan N. Kirby; Andrew W. Howard; Howard T. Isaacson; Geoffrey W. Marcy; David Levitan; Tanio Diaz-Santos; Lee Armus; James P. Lloyd (2012). "Characterizing the Cool KOIs III. KOI-961: A Small Star with Large Proper Motion and Three Small Planets". The Astrophysical Journal. 747 (2): 144. arXiv:1201.2189. Bibcode:2012ApJ...747..144M. doi:10.1088/0004-637X/747/2/144. S2CID 14889361.
  83. ^ Tuomi, Mikko (6 April 2012). "Evidence for 9 planets in the 10180 system". Astronomy & Astrophysics. 543: A52. arXiv:1204.1254v1. Bibcode:2012A&A...543A..52T. doi:10.1051/0004-6361/201118518. S2CID 15876919.
  84. ^ "Three Super-Earths Found Circling Nearby Red Dwarf". Archived from the original on 2019-01-02. Retrieved 2022-02-27.
  85. ^ Rosenthal, Lee J.; Fulton, Benjamin J.; Hirsch, Lea A.; Isaacson, Howard T.; Howard, Andrew W.; Dedrick, Cayla M.; Sherstyuk, Ilya A.; Blunt, Sarah C.; Petigura, Erik A.; Knutson, Heather A.; Behmard, Aida; Chontos, Ashley; Crepp, Justin R.; Crossfield, Ian J. M.; Dalba, Paul A.; Fischer, Debra A.; Henry, Gregory W.; Kane, Stephen R.; Kosiarek, Molly; Marcy, Geoffrey W.; Rubenzahl, Ryan A.; Weiss, Lauren M.; Wright, Jason T. (2021). "The California Legacy Survey. I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades". The Astrophysical Journal Supplement Series. 255 (1): 8. arXiv:2105.11583. Bibcode:2021ApJS..255....8R. doi:10.3847/1538-4365/abe23c. S2CID 235186973.
  86. ^ a b Teske, Johanna K; Shectman, Stephen A; Vogt, Steve S; Díaz, Matías; Butler, R. Paul; Crane, Jeffrey D; Thompson, Ian B; Arriagada, Pamela (2016). "The Magellan PFS Planet Search Program: Radial Velocity and Stellar Abundance Analyses of the 360 AU, Metal-Poor Binary "Twins" HD 133131A & B". The Astronomical Journal. 152 (6): 167. arXiv:1608.06216. Bibcode:2016AJ....152..167T. doi:10.3847/0004-6256/152/6/167. S2CID 118852162.
  87. ^ Orell-Miquel, J.; Nowak, G.; Murgas, F.; Palle, E.; Morello, G.; Luque, R.; Badenas-Agusti, M.; Ribas, I.; Lafarga, M.; Espinoza, N.; Morales, J. C.; Zechmeister, M.; Alqasim, A.; Cochran, W. D.; Gandolfi, D.; Goffo, E.; Kabáth, P.; Korth, J.; Livingston, J.; Lam, K. W. F.; Muresan, A.; Persson, C. M.; Van Eylen, V. (2023). "HD 191939 revisited: New and refined planet mass determinations, and a new planet in the habitable zone". Astronomy & Astrophysics. 669: A40. arXiv:2211.00667. Bibcode:2023A&A...669A..40O. doi:10.1051/0004-6361/202244120. S2CID 253197272.
  88. ^ a b Leleu, A.; Alibert, Y.; Hara, N. C.; Hooton, M. J.; Wilson, T. G.; Robutel, P.; Delisle, J.-B.; Laskar, J.; Hoyer, S.; Lovis, C.; Bryant, E. M.; Ducrot, E.; Cabrera, J.; Delrez, L.; Acton, J. S.; Adibekyan, V.; Allart, R.; Prieto, Allende; Alonso, R.; Alves, D.; et al. (2021-01-20). "Six transiting planets and a chain of Laplace resonances in TOI-178". Astronomy & Astrophysics. 649: A26. arXiv:2101.09260. Bibcode:2021A&A...649A..26L. doi:10.1051/0004-6361/202039767. ISSN 0004-6361. S2CID 231693292.
  89. ^ Rajpaul, V. M.; Buchhave, L. A.; Lacedelli, G.; Rice, K.; Mortier, A.; Malavolta, L.; Aigrain, S.; Borsato, L.; Mayo, A. W.; Charbonneau, D.; Damasso, M.; Dumusque, X.; Ghedina, A.; Latham, D. W.; López-Morales, M.; Magazzù, A.; Micela, G.; Molinari, E.; Pepe, F.; Piotto, G.; Poretti, E.; Rowther, S.; Sozzetti, A.; Udry, S.; Watson, C. A. (2021), "A HARPS-N mass for the elusive Kepler-37d: A case study in disentangling stellar activity and planetary signals", Monthly Notices of the Royal Astronomical Society, 507 (2): 1847–1868, arXiv:2107.13900, Bibcode:2021MNRAS.507.1847R, doi:10.1093/mnras/stab2192 Kepler-37e is discussed in sections 2.2.2 & 6.4.
  90. ^ "KOI-82". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 20 March 2022.
  91. ^ David, Trevor J.; Cody, Ann Marie; Hedges, Christina L.; Mamajek, Eric E.; Hillenbrand, Lynne A.; Ciardi, David R.; Beichman, Charles A.; Petigura, Erik A.; Fulton, Benjamin J.; Isaacson, Howard T.; Howard, Andrew W. (August 2019). "A Warm Jupiter-sized Planet Transiting the Pre-main-sequence Star V1298 Tau". The Astronomical Journal. 158 (2): 79. arXiv:1902.09670. Bibcode:2019AJ....158...79D. doi:10.3847/1538-3881/ab290f. ISSN 0004-6256. S2CID 119003936.
  92. ^ David, Trevor J.; Petigura, Erik A.; Luger, Rodrigo; Foreman-Mackey, Daniel; Livingston, John H.; Mamajek, Eric E.; Hillenbrand, Lynne A. (2019-10-29). "Four Newborn Planets Transiting the Young Solar Analog V1298 Tau". The Astrophysical Journal. 885 (1): L12. arXiv:1910.04563. Bibcode:2019ApJ...885L..12D. doi:10.3847/2041-8213/ab4c99. ISSN 2041-8213. S2CID 204008446.
  93. ^ Akinsanmi, B.; Santos, N. C.; Faria, J. P.; Oshagh, M.; Barros, S. C. C.; Santerne, A.; Charnoz, S. (2020-03-01). "Can planetary rings explain the extremely low density of HIP 41378 𝑓?". Astronomy & Astrophysics. 635: L8. arXiv:2002.11422. doi:10.1051/0004-6361/202037618. ISSN 0004-6361. Archived from the original on 2021-10-28. Retrieved 2022-03-19.
  94. ^ Santerne, A.; Malavolta, L.; Kosiarek, M. R.; Dai, F.; Dressing, C. D.; Dumusque, X.; Hara, N. C.; Lopez, T. A.; Mortier, A.; Vanderburg, A.; Adibekyan, V.; Armstrong, D. J.; Barrado, D.; Barros, S. C. C.; Bayliss, D.; Berardo, D.; Boisse, I.; Bonomo, A. S.; Bouchy, F.; Brown, D. J. A.; Buchhave, L. A.; Butler, R. P.; Collier Cameron, A.; Cosentino, R.; Crane, J. D.; Crossfield, I. J. M.; Damasso, M.; Deleuil, M. R.; Delgado Mena, E.; et al. (2019). "An extremely low-density and temperate giant exoplanet". arXiv:1911.07355 [astro-ph.EP].
  95. ^ Andrew Vanderburg; et al. (2016). "Five Planets Transiting a Ninth Magnitude Star". The Astrophysical Journal. 827 (1): L10. arXiv:1606.08441. Bibcode:2016ApJ...827L..10V. doi:10.3847/2041-8205/827/1/L10. S2CID 8794583.
  96. ^ Martin, Pierre-Yves (2022). "Planet HD 33142 c". exoplanet.eu. Archived from the original on 2024-02-03. Retrieved 2024-02-03.
  97. ^ Hirano, Teruyuki; Dai, Fei; Gandolfi, Davide; Fukui, Akihiko; Livingston, John H.; Miyakawa, Kohei; Endl, Michael; Cochran, William D.; Alonso-Floriano, Francisco J.; Kuzuhara, Masayuki; Montes, David; Ryu, Tsuguru; Albrecht, Simon; Barragan, Oscar; Cabrera, Juan; Csizmadia, Szilard; Deeg, Hans; Eigmüller, Philipp; Erikson, Anders; Fridlund, Malcolm; Grziwa, Sascha; Guenther, Eike W.; Hatzes, Artie P.; Korth, Judith; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Narita, Norio; Nespral, David; Nowak, Grzegorz; et al. (2018). "Exoplanets around Low-mass Stars Unveiled by K2". The Astronomical Journal. 155 (3): 127. arXiv:1710.03239. Bibcode:2018AJ....155..127H. doi:10.3847/1538-3881/aaa9c1. S2CID 54590874.
  98. ^ Gilliland, Ronald L.; et al. (2013). "Kepler-68: Three Planets, One with a Density Between That of Earth and Ice Giants". The Astrophysical Journal. 766 (1). 40. arXiv:1302.2596. Bibcode:2013ApJ...766...40G. doi:10.1088/0004-637X/766/1/40.
  99. ^ Mills, Sean M.; et al. (2019). "Long-period Giant Companions to Three Compact, Multiplanet Systems". The Astronomical Journal. 157 (4). 145. arXiv:1903.07186. Bibcode:2019AJ....157..145M. doi:10.3847/1538-3881/ab0899. S2CID 119197547.
  100. ^ Desidera, S.; et al. (2014). "The GAPS programme with HARPS-N at TNG. IV. A planetary system around XO-2S". Astronomy and Astrophysics. 567 (6). L6. arXiv:1407.0251. Bibcode:2014A&A...567L...6D. doi:10.1051/0004-6361/201424339. S2CID 118567085. Archived from the original on 2021-05-11. Retrieved 2022-06-25.
  101. ^ Damasso, M.; et al. (2015). "A comprehensive analysis of the XO-2 stellar and planetary systems". Astronomy & Astrophysics. 575. A111. arXiv:1501.01424. doi:10.1051/0004-6361/201425332.
  102. ^ Heller, René; Rodenbeck, Kai; Hippke, Michael (2019). "Transit least-squares survey. I. Discovery and validation of an Earth-sized planet in the four-planet system K2-32 near the 1:2:5:7 resonance". Astronomy and Astrophysics. 625. A31. arXiv:1904.00651. Bibcode:2019A&A...625A..31H. doi:10.1051/0004-6361/201935276. Archived from the original on 2022-01-25. Retrieved 2022-03-04.
  103. ^ Souto, Diogo; et al. (2017). "Chemical Abundances of M-dwarfs from the APOGEE Survey. I. The Exoplanet Hosting Stars Kepler-138 and Kepler-186". The Astrophysical Journal. 835 (2): 239. arXiv:1612.01598. Bibcode:2017ApJ...835..239S. doi:10.3847/1538-4357/835/2/239. S2CID 73634716.
  104. ^ Bailer-Jones, C. A. L.; et al. (August 2018). "Estimating distances from parallaxes IV: Distances to 1.33 billion stars in Gaia Data Release 2". The Astronomical Journal. 156 (2): 58. arXiv:1804.10121. Bibcode:2018AJ....156...58B. doi:10.3847/1538-3881/aacb21. S2CID 119289017. Distance to Kepler 186, after taking into account light extinction Archived 2022-05-11 at the Wayback Machine
  105. ^ "Kepler-186 f". NASA Exoplanet Archive. Archived from the original on 18 March 2022. Retrieved 19 July 2016.
  106. ^ Quintana, E. V.; Barclay, T.; Raymond, S. N.; Rowe, J. F.; Bolmont, E.; Caldwell, D. A.; Howell, S. B.; Kane, S. R.; Huber, D.; Crepp, J. R.; Lissauer, J. J.; Ciardi, D. R.; Coughlin, J. L.; Everett, M. E.; Henze, C. E.; Horch, E.; Isaacson, H.; Ford, E. B.; Adams, F. C.; Still, M.; Hunter, R. C.; Quarles, B.; Selsis, F. (2014-04-18). "An Earth-Sized Planet in the Habitable Zone of a Cool Star". Science. 344 (6181): 277–280. arXiv:1404.5667. Bibcode:2014Sci...344..277Q. doi:10.1126/science.1249403. PMID 24744370. S2CID 1892595. free version = http://www.nasa.gov/sites/default/files/files/kepler186_main_final.pdf Archived 2014-04-18 at the Wayback Machine
  107. ^ Christiansen, Jessie L.; Crossfield, Ian J. M.; Barentsen, Geert; Lintott, Chris J.; Barclay, Thomas; Simmons, Brooke D.; Petigura, Erik; Schlieder, Joshua E.; Dressing, Courtney D.; Vanderburg, Andrew; Ciardi, David R.; Allen, Campbell; McMaster, Adam; Miller, Grant; Veldthuis, Martin; Allen, Sarah; Wolfenbarger, Zach; Cox, Brian; Zemiro, Julia; Howard, Andrew W.; Livingston, John; Sinukoff, Evan; Catron, Timothy; Grey, Andrew; Kusch, Joshua J. E.; Terentev, Ivan; Vales, Martin; Kristiansen, Martti H. (2018-01-11). "The K2-138 System: A Near-resonant Chain of Five Sub-Neptune Planets Discovered by Citizen Scientists". The Astronomical Journal. 155 (2): 57. arXiv:1801.03874. Bibcode:2018AJ....155...57C. doi:10.3847/1538-3881/aa9be0. ISSN 1538-3881. S2CID 52971376.
  108. ^ Becker, Juliette C.; Vanderburg, Andrew; Adams, Fred C.; Rappaport, Saul A.; Schwengeler, Hans Martin (2015-10-12). "Wasp-47: A Hot Jupiter System with Two Additional Planets Discovered by K2". The Astrophysical Journal. 812 (2): L18. arXiv:1508.02411. Bibcode:2015ApJ...812L..18B. doi:10.1088/2041-8205/812/2/L18. ISSN 2041-8213. S2CID 14681933.
  109. ^ Neveu-VanMalle, M.; et al. (2016). "Hot Jupiters with relatives: Discovery of additional planets in orbit around WASP-41 and WASP-47". Astronomy and Astrophysics. 586. A93. arXiv:1509.07750. Bibcode:2016A&A...586A..93N. doi:10.1051/0004-6361/201526965. S2CID 53354547. Archived from the original on 2022-02-28. Retrieved 2022-05-08.
  110. ^ "WASP-47". exoplanetarchive.ipac.caltech.edu. Archived from the original on 2022-05-08. Retrieved 2022-05-08.
  111. ^ Malavolta, Luca; et al. (2017). "The Kepler-19 System: A Thick-envelope Super-Earth with Two Neptune-mass Companions Characterized Using Radial Velocities and Transit Timing Variations". The Astronomical Journal. 153 (5). 224. arXiv:1703.06885. Bibcode:2017AJ....153..224M. doi:10.3847/1538-3881/aa6897.
  112. ^ Lissauer, Jack J; Marcy, Geoffrey W; Bryson, Stephen T; Rowe, Jason F; Jontof-Hutter, Daniel; Agol, Eric; Borucki, William J; Carter, Joshua A; Ford, Eric B; Gilliland, Ronald L; Kolbl, Rea; Star, Kimberly M; Steffen, Jason H; Torres, Guillermo (2014). "Validation Of Kepler's Multiple Planet Candidates. Ii. Refined Statistical Framework and Descriptions of Systems of Special Interest". The Astrophysical Journal. 784 (1): 44. arXiv:1402.6352. Bibcode:2014ApJ...784...44L. doi:10.1088/0004-637X/784/1/44. S2CID 119108651.
  113. ^ a b Barclay, Thomas; Quintana, Elisa V; Adams, Fred C; Ciardi, David R; Huber, Daniel; Foreman-Mackey, Daniel; Montet, Benjamin T; Caldwell, Douglas (2015). "The Five Planets in the Kepler-296 Binary System All Orbit the Primary: A Statistical and Analytical Analysis". The Astrophysical Journal. 809 (1): 7. arXiv:1505.01845. Bibcode:2015ApJ...809....7B. doi:10.1088/0004-637X/809/1/7. S2CID 37742564.
  114. ^ Schneider, Jean, "Star: Kepler-25", Extrasolar Planets Encyclopaedia, archived from the original on 2012-06-16, retrieved 2013-12-18
  115. ^ Steffen, Jason H.; et al. (2012). "Transit timing observations from Kepler - III. Confirmation of four multiple planet systems by a Fourier-domain study of anticorrelated transit timing variations". Monthly Notices of the Royal Astronomical Society. 421 (3): 2342–2354. arXiv:1201.5412. Bibcode:2012MNRAS.421.2342S. doi:10.1111/j.1365-2966.2012.20467.x.
  116. ^ Marcy, Geoffrey W.; et al. (2014). "Masses, Radii, and Orbits of Small Kepler Planets: The Transition from Gaseous to Rocky Planets". The Astrophysical Journal Supplement Series. 210 (2). 20. arXiv:1401.4195. Bibcode:2014ApJS..210...20M. doi:10.1088/0067-0049/210/2/20.
  117. ^ Hand, Eric (20 December 2011). "Kepler discovers first Earth-sized exoplanets". Nature. doi:10.1038/nature.2011.9688. S2CID 122575277.
  118. ^ Nespral, D.; et al. (2017). "Mass determination of K2-19b and K2-19c from radial velocities and transit timing variations". Astronomy and Astrophysics. 601. A128. arXiv:1604.01265. Bibcode:2017A&A...601A.128N. doi:10.1051/0004-6361/201628639. S2CID 55978628. Archived from the original on 2022-05-04. Retrieved 2022-03-18.
  119. ^ Sinukoff, Evan; et al. (2016). "Eleven Multiplanet Systems From K2 Campaigns 1 and 2 and the Masses of Two Hot Super-Earths". The Astrophysical Journal. 827 (1). 78. arXiv:1511.09213. Bibcode:2016ApJ...827...78S. doi:10.3847/0004-637X/827/1/78.
  120. ^ "Pulsar Planets". Archived from the original on 30 December 2005.
  121. ^ Wolszczan, A.; Frail, D. (1992). "A planetary system around the millisecond pulsar PSR1257 + 12". Nature. 355 (6356): 145–147. Bibcode:1992Natur.355..145W. doi:10.1038/355145a0. S2CID 4260368.
  122. ^ a b c Borucki, William J.; et al. (18 April 2013). "Kepler-62: A Five-Planet System with Planets of 1.4 and 1.6 Earth Radii in the Habitable Zone". Science Express. 340 (6132): 587–90. arXiv:1304.7387. Bibcode:2013Sci...340..587B. doi:10.1126/science.1234702. hdl:1721.1/89668. PMID 23599262. S2CID 21029755. Archived from the original on 2 May 2022. Retrieved 18 March 2022.
  123. ^ Johnson, Michele; Harrington, J.D. (18 April 2013). "NASA's Kepler Discovers Its Smallest 'Habitable Zone' Planets to Date". NASA. Archived from the original on 8 May 2020. Retrieved 18 March 2022.
  124. ^ Steffen, Jason H.; Fabrycky, Daniel C.; Ford, Eric B.; Carter, Joshua A.; Desert, Jean-Michel; Fressin, Francois; Holman, Matthew J.; Lissauer, Jack J.; Moorhead, Althea V.; Rowe, Jason F.; Ragozzine, Darin; Welsh, William F.; Batalha, Natalie M.; Borucki, William J.; Buchhave, Lars A.; Bryson, Steve; Caldwell, Douglas A.; Charbonneau, David; Ciardi, David R.; Cochran, William D.; Endl, Michael; Everett, Mark E.; Gautier III, Thomas N.; Gilliland, Ron L.; Girouard, Forrest R.; Jenkins, Jon M.; Horch, Elliott; Howell, Steve B.; Isaacson, Howard; et al. (2012), "Transit Timing Observations from Kepler: III. Confirmation of 4 Multiple Planet Systems by a Fourier-Domain Study of Anti-correlated Transit Timing Variations", Monthly Notices of the Royal Astronomical Society, 421 (3), arXiv:1201.5412, Bibcode:2012MNRAS.421.2342S, doi:10.1111/j.1365-2966.2012.20467.x, S2CID 11898578
  125. ^ Cubillos, Patricio; Erkaev, Nikolai V.; Juvan, Ines; Fossati, Luca; Johnstone, Colin P.; Lammer, Helmut; Lendl, Monika; Odert, Petra; Kislyakova, Kristina G. (2016), "An overabundance of low-density Neptune-like planets", Monthly Notices of the Royal Astronomical Society, 466 (2): 1868–1879, arXiv:1611.09236, doi:10.1093/mnras/stw3103, S2CID 119408956
  126. ^ Jontof-Hutter, Daniel; Ford, Eric B.; Rowe, Jason F.; Lissauer, Jack J.; Fabrycky, Daniel C.; Christa Van Laerhoven; Agol, Eric; Deck, Katherine M.; Holczer, Tomer; Mazeh, Tsevi (2015), Secure TTV Mass Measurements: Ten Kepler Exoplanets between 3 and 8 M🜨 with Diverse Densities and Incident Fluxes, arXiv:1512.02003, doi:10.3847/0004-637X/820/1/39, S2CID 11322397
  127. ^ "Kepler-80". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 10 January 2017.
  128. ^ Xie, J.-W. (2013). "Transit timing variation of near-resonance planetary pairs: confirmation of 12 multiple-planet systems". Astrophysical Journal Supplement Series. 208 (2): 22. arXiv:1208.3312. Bibcode:2013ApJS..208...22X. doi:10.1088/0067-0049/208/2/22. S2CID 17160267.
  129. ^ a b Shallue, C. J.; Vanderburg, A. (2017). "Identifying Exoplanets With Deep Learning: A Five Planet Resonant Chain Around Kepler-80 And An Eighth Planet Around Kepler-90" (PDF). The Astrophysical Journal. 155 (2): 94. arXiv:1712.05044. Bibcode:2018AJ....155...94S. doi:10.3847/1538-3881/aa9e09. S2CID 4535051. Archived (PDF) from the original on 2017-12-24. Retrieved 2017-12-15.
  130. ^ MacDonald, Mariah G.; Ragozzine, Darin; Fabrycky, Daniel C.; Ford, Eric B.; Holman, Matthew J.; Isaacson, Howard T.; Lissauer, Jack J.; Lopez, Eric D.; Mazeh, Tsevi (2016-01-01). "A Dynamical Analysis of the Kepler-80 System of Five Transiting Planets". The Astronomical Journal. 152 (4): 105. arXiv:1607.07540. Bibcode:2016AJ....152..105M. doi:10.3847/0004-6256/152/4/105. S2CID 119265122.
  131. ^ Ekrem Murat Esmer; Baştürk, Özgür; Selim Osman Selam; Aliş, Sinan (2022), "Detection of two additional circumbinary planets around Kepler-451", Monthly Notices of the Royal Astronomical Society, 511 (4): 5207–5216, arXiv:2202.02118, Bibcode:2022MNRAS.511.5207E, doi:10.1093/mnras/stac357
  132. ^ Masuda, Kento; Hirano, Teruyuki; Taruya, Atsushi; Nagasawa, Makiko; Suto, Yasushi (2013). "Characterization of the KOI-94 System with Transit Timing Variation Analysis: Implication for the Planet-Planet Eclipse". The Astrophysical Journal. 778 (2): 185–200. arXiv:1310.5771. Bibcode:2013ApJ...778..185M. doi:10.1088/0004-637X/778/2/185. S2CID 119264400.
  133. ^ Bonomo, Aldo S.; Zeng, Li; Damasso, Mario; Leinhardt, Zoë M.; Justesen, Anders B.; Lopez, Eric; Lund, Mikkel N.; Malavolta, Luca; Silva Aguirre, Victor; Buchhave, Lars A.; Corsaro, Enrico; Denman, Thomas; Lopez-Morales, Mercedes; Mills, Sean M.; Mortier, Annelies; Rice, Ken; Sozzetti, Alessandro; Vanderburg, Andrew; Affer, Laura; Arentoft, Torben; Benbakoura, Mansour; Bouchy, François; Christensen-Dalsgaard, Jørgen; Collier Cameron, Andrew; Cosentino, Rosario; Dressing, Courtney D.; Dumusque, Xavier; Figueira, Pedro; Fiorenzano, Aldo F. M.; García, Rafael A.; Handberg, Rasmus; Harutyunyan, Avet; Johnson, John A.; Kjeldsen, Hans; Latham, David W.; Lovis, Christophe; Lundkvist, Mia S.; Mathur, Savita; Mayor, Michel; Micela, Giusi; Molinari, Emilio; Motalebi, Fatemeh; Nascimbeni, Valerio; Nava, Chantanelle; Pepe, Francesco; Phillips, David F.; Piotto, Giampaolo; Poretti, Ennio; Sasselov, Dimitar; Ségransan, Damien; Udry, Stéphane; Watson, Chris (May 2019). "A giant impact as the likely origin of different twins in the Kepler-107 exoplanet system". Nature Astronomy. 3 (5): 416–423. arXiv:1902.01316. Bibcode:2019NatAs...3..416B. doi:10.1038/s41550-018-0684-9. S2CID 89604609.
  134. ^ a b Lissauer, Jack J.; et al. (2011). "A closely packed system of low-mass, low-density planets transiting Kepler-11". Nature. 470 (7332): 53–58. arXiv:1102.0291. Bibcode:2011Natur.470...53L. doi:10.1038/nature09760. PMID 21293371. S2CID 4388001.
  135. ^ Lissauer, Jack J.; et al. (2013). "All Six Planets Known to Orbit Kepler-11 Have Low Densities". The Astrophysical Journal. 770 (2). 131. arXiv:1303.0227. Bibcode:2013ApJ...770..131L. doi:10.1088/0004-637X/770/2/131.
  136. ^ Libby-Roberts, Jessica E.; et al. (2020). "The Featureless Transmission Spectra of Two Super-puff Planets". The Astronomical Journal. 159 (2): 57. arXiv:1910.12988. Bibcode:2020AJ....159...57L. doi:10.3847/1538-3881/ab5d36. S2CID 204950000.
  137. ^ Nancy Atkinson (26 August 2010). "Kepler Discovers Multi-Planet System". Universe Today. Archived from the original on 24 February 2012. Retrieved 13 January 2011.
  138. ^ Holman, M. J.; et al. (2010). "Kepler-9: A System of Multiple Planets Transiting a Sun-Like Star, Confirmed by Timing Variations" (PDF). Science. 330 (6000): 51–54. Bibcode:2010Sci...330...51H. doi:10.1126/science.1195778. PMID 20798283. S2CID 8141085. Archived (PDF) from the original on 2022-12-07. Retrieved 2022-06-17.
  139. ^ Chou, Felicia; Hawkes, Alison; Landau, Elizabeth (14 December 2017). "Artificial Intelligence, NASA Data Used to Discover Eighth Planet Circling Distant Star". NASA. Archived from the original on 5 May 2020. Retrieved 15 December 2017.
  140. ^ Schmitt, J. R.; Wang, J.; Fischer, D. A.; Jek, K. J.; Moriarty, J. C.; Boyajian, T. S.; Schwamb, M. E.; Lintott, C.; Lynn, S.; Smith, A. M.; Parrish, M.; Schawinski, K.; Simpson, R.; LaCourse, D.; Omohundro, M. R.; Winarski, T.; Goodman, S. J.; Jebson, T.; Schwengeler, H. M.; Paterson, D. A.; Sejpka, J.; Terentev, I.; Jacobs, T.; Alsaadi, N.; Bailey, R. C.; Ginman, T.; Granado, P.; Guttormsen, K. V.; Mallia, F.; Papillon, A. L.; Rossi, F.; Socolovsky, M.; Stiak, L. (2014-06-26). "Planet Hunters. VI. An Independent Characterization of KOI-351 and Several Long Period Planet Candidates From the Kepler Archival Data". The Astronomical Journal. 148 (28): 28. arXiv:1310.5912. Bibcode:2014AJ....148...28S. doi:10.1088/0004-6256/148/2/28. S2CID 119238163.
  141. ^ Patel, Neel V. (2020-06-05). "Astronomers have found a planet like Earth orbiting a star like the sun". MIT Technology Review. Archived from the original on 2023-05-25. Retrieved 2020-06-07.
  142. ^ Orosz, Jerome A.; Welsh, William F.; Carter, Joshua A.; Fabrycky, Daniel C.; Cochran, William D.; Endl, Michael; Ford, Eric B.; Haghighipour, Nader; MacQueen, Phillip J.; Mazeh, Tsevi; Sanchis-Ojeda, Roberto; Short, Donald R.; Torres, Guillermo; Agol, Eric; Buchhave, Lars A.; Doyle, Laurance R.; Isaacson, Howard; Lissauer, Jack J.; Marcy, Geoffrey W.; Shporer, Avi; Windmiller, Gur; Barclay, Thomas; Boss, Alan P.; Clarke, Bruce D.; Fortney, Jonathan; Geary, John C.; Holman, Matthew J.; Huber, Daniel; Jenkins, Jon M.; et al. (2012). "Kepler-47: A Transiting Circumbinary Multi-Planet System". Science. 337 (6101): 1511–4. arXiv:1208.5489. Bibcode:2012Sci...337.1511O. doi:10.1126/science.1228380. PMID 22933522. S2CID 44970411.
  143. ^ "NASA's Kepler Discovers Multiple Planets Orbiting a Pair of Stars". exoplanets.nasa.gov. NASA. 28 August 2012. Archived from the original on 31 October 2012. Retrieved 2 September 2012. Kepler mission has discovered multiple transiting planets orbiting two suns for the first time
  144. ^ Orosz, Jerome A.; Welsh, William F.; Carter, Joshua A.; Fabrycky, Daniel C.; Cochran, William D.; Endl, Michael; Ford, Eric B.; Haghighipour, Nader; MacQueen, Phillip J.; Mazeh, Tsevi; Sanchis-Ojeda, Roberto; Short, Donald R.; Torres, Guillermo; Agol, Eric; Buchhave, Lars A.; Doyle, Laurance R.; Isaacson, Howard; Lissauer, Jack J.; Marcy, Geoffrey W.; Shporer, Avi; Windmiller, Gur; Barclay, Thomas; Boss, Alan P.; Clarke, Bruce D.; Fortney, Jonathan; Geary, John C.; Holman, Matthew J.; Huber, Daniel; Jenkins, Jon M.; et al. (28 August 2012). "NASA's Kepler discovers multiple planets orbiting a pair of stars". Science. 337 (6101). Sciencedaily.com: 1511–4. arXiv:1208.5489. Bibcode:2012Sci...337.1511O. doi:10.1126/science.1228380. PMID 22933522. S2CID 44970411. Archived from the original on 21 September 2022. Retrieved 4 November 2012.
  145. ^ Pichierri, Gabriele; Batygin, Konstantin; Morbidelli, Alessandro (2019), "The role of dissipative evolution for three-planet, near-resonant extrasolar systems", Astronomy & Astrophysics, 625: A7, arXiv:1903.09474, Bibcode:2019A&A...625A...7P, doi:10.1051/0004-6361/201935259, S2CID 85459759
  146. ^ Mugrauer, M.; et al. (2006). "HD 3651 B: the first directly imaged brown dwarf companion of an exoplanet host star". Monthly Notices of the Royal Astronomical Society: Letters (abstract). 373 (1): L31–L35. arXiv:astro-ph/0608484. Bibcode:2006MNRAS.373L..31M. doi:10.1111/j.1745-3933.2006.00237.x. S2CID 15608344.
  147. ^ Marcy, Geoffrey W.; et al. (1999). "Two New Planets in Eccentric Orbits". The Astrophysical Journal. 520 (1): 239–247. arXiv:astro-ph/9904275. Bibcode:1999ApJ...520..239M. doi:10.1086/307451. S2CID 16827678.
  148. ^ Marcy, Geoffrey W.; et al. (2001). "Two Substellar Companions Orbiting HD 168443". The Astrophysical Journal. 555 (1): 418–425. Bibcode:2001ApJ...555..418M. doi:10.1086/321445.
  149. ^ Cheetham, A.; et al. (June 2018). "Direct imaging of an ultracool substellar companion to the exoplanet host star HD 4113 A". Astronomy & Astrophysics. 614: 19. arXiv:1712.05217. Bibcode:2018A&A...614A..16C. doi:10.1051/0004-6361/201630136. S2CID 119084543. A16.
  150. ^ "Astronomers Announce First Clear Evidence of a Brown Dwarf". Space Telescope Science Institute news release STScI-1995-48. November 29, 1995. Archived from the original on 9 July 2008. Retrieved 24 September 2013.
  151. ^ "Planet GJ 229 A b". Extrasolar Planets Encyclopaedia. 1995. Retrieved 7 September 2022.
  152. ^ "Planet GJ 229 A c". Extrasolar Planets Encyclopaedia. 1995. Retrieved 7 September 2022.
  153. ^ Feng, Fabo; Anglada-Escudé, Guillem; Tuomi, Mikko; Jones, Hugh R. A.; Chanamé, Julio; Butler, Paul R.; Janson, Markus (14 October 2019), "Detection of the nearest Jupiter analog in radial velocity and astrometry data", Monthly Notices of the Royal Astronomical Society, 490 (4): 5002–5016, arXiv:1910.06804, Bibcode:2019MNRAS.490.5002F, doi:10.1093/mnras/stz2912, S2CID 204575783
  154. ^ Scholz, Ralf-Dieter; McCaughrean, Mark (2003-01-13). "Discovery of Nearest Known Brown Dwarf: Bright Southern Star Epsilon Indi Has Cool, Substellar Companion". European Southern Observatory. Archived from the original on October 14, 2007. Retrieved 2006-05-24.
  155. ^ Scholz, R.-D.; McCaughrean, M. J.; Lodieu, N.; Kuhlbrodt, B. (February 2003). "ε Indi B: A new benchmark T dwarf". Astronomy and Astrophysics. 398 (3): L29–L33. arXiv:astro-ph/0212487. Bibcode:2003A&A...398L..29S. doi:10.1051/0004-6361:20021847. S2CID 119474823.
  156. ^ Butler, R. P.; et al. (2006). "Catalog of Nearby Exoplanets". The Astrophysical Journal. 646 (1): 505–522. arXiv:astro-ph/0607493. Bibcode:2006ApJ...646..505B. doi:10.1086/504701. S2CID 119067572.
  157. ^ Feng, Fabo; Butler, R. Paul; et al. (August 2022). "3D Selection of 167 Substellar Companions to Nearby Stars". The Astrophysical Journal Supplement Series. 262 (21): 21. arXiv:2208.12720. Bibcode:2022ApJS..262...21F. doi:10.3847/1538-4365/ac7e57. S2CID 251864022.
  158. ^ Hatzes, Artie P.; et al. (2022). "A Radial Velocity Study of the Planetary System of π Mensae: Improved Planet Parameters for π Mensae c and a Third Planet on a 125 Day Orbit". The Astronomical Journal. 163 (5): 223. arXiv:2203.01018. Bibcode:2022AJ....163..223H. doi:10.3847/1538-3881/ac5dcb. S2CID 247218413.
  159. ^ Fischer, Debra A.; et al. (2003). "A Planetary Companion to HD 40979 and Additional Planets Orbiting HD 12661 and HD 38529". The Astrophysical Journal. 586 (2): 1394–1408. Bibcode:2003ApJ...586.1394F. doi:10.1086/367889.
  160. ^ Khandelwal, Akanksha; Sharma, Rishikesh; Chakraborty, Abhijit; Chaturvedi, Priyanka; Ulmer-Moll, Solène; Ciardi, David R.; Boyle, Andrew W.; Baliwal, Sanjay; Bieryla, Allyson; Latham, David W.; Prasad, Neelam J. S. S. V.; Nayak, Ashirbad; Lendl, Monika; Mordasini, Christoph (2023-04-01). "Discovery of a massive giant planet with extreme density around the sub-giant star TOI-4603". Astronomy & Astrophysics. 672: L7. arXiv:2303.11841. Bibcode:2023A&A...672L...7K. doi:10.1051/0004-6361/202245608. ISSN 0004-6361. Archived from the original on 2024-02-28. Retrieved 2023-12-15.
  161. ^ Zhang, Keming; Zang, Weicheng; El-Badry, Kareem; Lu, Jessica R.; et al. (September 2024). "An Earth-mass planet and a brown dwarf in orbit around a white dwarf". Nature Astronomy. arXiv:2409.02157. Bibcode:2024NatAs.tmp..237Z. doi:10.1038/s41550-024-02375-9.{{cite journal}}: CS1 maint: bibcode (link)