Lithocholic acid
Names | |
---|---|
IUPAC name
3α-Hydroxy-5β-cholan-24-oic acid
| |
Systematic IUPAC name
(4R)-4-[(1R,3aS,3bR,5aR,7R,9aS,9bS,11aR)-7-Hydroxy-9a,11a-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-1-yl]pentanoic acid | |
Other names
Lithocholate; Lithocolic acid; 3α-Hydroxy-5β-cholanic acid; 5β-Cholan-24-oic acid-3α-ol
| |
Identifiers | |
3D model (JSmol)
|
|
3217757 | |
ChEBI | |
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.006.455 |
EC Number |
|
KEGG | |
PubChem CID
|
|
RTECS number |
|
UNII | |
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
C24H40O3 | |
Molar mass | 376.581 g·mol−1 |
Melting point | 183 to 188 °C (361 to 370 °F; 456 to 461 K) |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Lithocholic acid, also known as 3α-hydroxy-5β-cholan-24-oic acid or LCA, is a bile acid that acts as a detergent to solubilize fats for absorption. Bacterial action in the colon produces LCA from chenodeoxycholic acid by reduction of the hydroxyl functional group at carbon-7 in the "B" ring of the steroid framework.[citation needed]
It has been implicated in human and experimental animal carcinogenesis.[2][3] Preliminary in vitro research suggests that LCA selectively kills neuroblastoma cells, while sparing normal neuronal cells and is cytotoxic to numerous other malignant cell types at physiologically relevant concentrations.[4]
Dietary fiber can bind to lithocholic acid and aid in its excretion in stool;[5] as such, fiber can protect against colon cancer.
LCA (and LCA acetate and LCA propionate) can activate the vitamin D receptor without raising calcium levels as much as vitamin D itself.[6]
LCA binds with 20 μM affinity to the human membrane enzyme NAPE-PLD, enhancing dimer assembly and enabling catalysis. NAPE-PLD catalyzes the release of anandamide and other N-acylethanolamines (NAE) from the membrane precursor N-acylphosphatidylethanolamine (NAPE). NAPE-PLD facilitates crosstalk between bile acid signals and lipid amide signals.[7] [8][9]
LCA has been reported to have anti-aging effects in yeast,[10][11][12] and more recently fruit flies, nematodes, and mice.[13] [14]
References
[edit]- ^ Lithocholic acid at Sigma-Aldrich
- ^ Kozoni, V.; Tsioulias, G; Shiff, S; Rigas, B (2000). "The effect of lithocholic acid on proliferation and apoptosis during the early stages of colon carcinogenesis: Differential effect on apoptosis in the presence of a colon carcinogen". Carcinogenesis. 21 (5): 999–1005. doi:10.1093/carcin/21.5.999. PMID 10783324.
- ^ Zeng H, Umar S, Rust B, Lazarova D, Bordonaro M. Secondary Bile Acids and Short Chain Fatty Acids in the Colon: A Focus on Colonic Microbiome, Cell Proliferation, Inflammation, and Cancer. Int J Mol Sci. 2019 Mar 11;20(5):1214. doi:10.3390/ijms20051214 PMID 30862015
- ^ Goldberg, AA; Beach, A; Davies, GF; Harkness, TA; Leblanc, A; Titorenko, VI (2011). "Lithocholic bile acid selectively kills neuroblastoma cells, while sparing normal neuronal cells". Oncotarget. 2 (10): 761–82. doi:10.18632/oncotarget.338. PMC 3248158. PMID 21992775.
- ^ Jenkins, DJ; Wolever, TM; Rao, AV; Hegele, RA; Mitchell, SJ; Ransom, TP; Boctor, DL; Spadafora, PJ; et al. (1993). "Effect on blood lipids of very high intakes of fiber in diets low in saturated fat and cholesterol". The New England Journal of Medicine. 329 (1): 21–6. doi:10.1056/NEJM199307013290104. PMID 8389421.
- ^ Ishizawa, M.; Matsunawa, M.; Adachi, R.; Uno, S.; Ikeda, K.; Masuno, H.; Shimizu, M.; Iwasaki, K.-i.; et al. (2008). "Lithocholic acid derivatives act as selective vitamin D receptor modulators without inducing hypercalcemia". The Journal of Lipid Research. 49 (4): 763–772. doi:10.1194/jlr.M700293-JLR200. PMID 18180267.
- ^ Magotti P, Bauer I, Igarashi M, Babagoli M, Marotta R, Piomelli D, Garau G (Dec 2014). "Structure of Human N-Acylphosphatidylethanolamine-Hydrolyzing Phospholipase D: Regulation of Fatty Acid Ethanolamide Biosynthesis by Bile Acids". Structure. 23 (3): 598–604. doi:10.1016/j.str.2014.12.018. PMC 4351732. PMID 25684574.
- ^ Kostic M (2015). "Bile Acids as Enzyme Regulators". Chemistry & Biology. 22 (4): 427–428. doi:10.1016/j.chembiol.2015.04.007.
- ^ Margheritis E, Castellani B, Magotti P, Peruzzi S, Romeo E, Natali F, Mostarda S, Gioiello A, Piomelli D, Garau G (Oct 2016). "Bile Acid Recognition by NAPE-PLD". ACS Chem Biol. 11 (10): 2908–2914. doi:10.1021/acschembio.6b00624. PMC 5074845. PMID 27571266.
- ^ Goldberg, AA; Richard, VR; Kyryakov, P; Bourque, SD; Beach, A; Burstein, MT; Glebov, A; Koupaki, O; et al. (2010). "Chemical genetic screen identifies lithocholic acid as an anti-aging compound that extends yeast chronological life span in a TOR-independent manner, by modulating housekeeping longevity assurance processes". Aging. 2 (7): 393–414. doi:10.18632/aging.100168. PMC 2933888. PMID 20622262.
- ^ Arlia-Ciommo, Anthony; Leonov, Anna; Mohammad, Karamat; Beach, Adam; Richard, Vincent R.; Bourque, Simon D.; Burstein, Michelle T.; Goldberg, Alexander A.; Kyryakov, Pavlo; Gomez-Perez, Alejandra; Koupaki, Olivia; Titorenko, Vladimir I. (2018). "Mechanisms through which lithocholic acid delays yeast chronological aging under caloric restriction conditions". Oncotarget. 9 (79): 34945–34971. doi:10.18632/oncotarget.26188. PMC 6201858. PMID 30405886.
- ^ Beach, Adam; Richard, Vincent R.; Leonov, Anna; Burstein, Michelle T.; Bourque, Simon D.; Koupaki, Olivia; Juneau, Mylène; Feldman, Rachel; Iouk, Tatiana; Titorenko, Vladimir I. (2013). "Mitochondrial membrane lipidome defines yeast longevity". Aging. 5 (7): 551–574. doi:10.18632/aging.100578. PMC 3765583. PMID 23924582.
- ^ Ledford, Heidi, "Why eating less slows ageing: this molecule is key, Nature, December 18, 2024
- ^ Qu, Qi; Chen, Yan; Wang, Yu; Long, Shating; Wang, Weiche; Yang, Heng-Ye; Li, Mengqi; Tian, Xiao; Wei, Xiaoyan; Liu, Yan-Hui; Xu, Shengrong; Zhang, Cixiong; Zhu, Mingxia; Lam, Sin Man; Wu, Jianfeng (2024-12-18). "Lithocholic acid phenocopies anti-ageing effects of calorie restriction". Nature. doi:10.1038/s41586-024-08329-5. ISSN 0028-0836.