Jump to content

PKS 0537-286

From Wikipedia, the free encyclopedia
PKS 0537-286
PKS 0537-286 taken by DESI Legacy Surveys
Observation data (J2000.0 epoch)
ConstellationColumba
Right ascension05h 39m 54.281s
Declination-28d 39m 55.95s
Redshift3.104000
Heliocentric radial velocity930,556 km/s
Distance11.4 Gly (light travel time distance)
Apparent magnitude (V)0.54
Apparent magnitude (B)0.43
Surface brightness18.1
Characteristics
TypeFSQR;Blazar
Other designations
PMN J0539-2839, BZQ J0539-2839, PGC 2824447, MRC 0537-286, NVSS J053954-283956, PKS B0537-286, OG -263, TXS 0537-286, 2FGL 0539.3-2841, IRCF J053954.2-283955, 2XMM J053954.2-283956, RX J0539.9-2839

PKS 0537-286 (referred to QSO 0537-286), also known as QSO B0537-286, is a quasar located in the constellation Columba. With a redshift of 3.104, the object is located 11.4 billion light years away[1] and belongs to the flat spectrum radio quasar blazar subclass (FSQR).[2] It is one of the most luminous known high-redshift quasars.[3]

Observation history[edit]

First detected at radio frequencies in 1975, PKS 0537-286 was observed at X-rays by the Einstein observatory.[4] It was later studied by ASCA,[5] ROSAT,[6] XMM[7] and subsequently Swift.[8] These observations showed PKS 0537-286 as extremely luminous quasar ( Lx=1047 erg s−1 in the 0.1-2 keV range) with a particularly hard spectrum (r = 1 measured by Swift/BAT), which in the γ-ray band, it shows an energy flux of (1.44 ± 0.006) × 10−11 erg cm−2 s−1 in the fourth catalogue of Fermi-LAT active galactic nuclei.[9] A weak iron K emission line and reflection features is also found in PKS 0537-286. Moreover, Sowards-Emmerd et al. (2004)[10] identified the quasar as probable counterpart of the EGRET source 3EG J0531-2940.[11]

Characteristics[edit]

PKS 0537-286 is the brightest blazar beyond z = 3.0.[2] It shows characteristic properties of blazars, such as (rapid variability, strong polarization and high brightness) which are widely attributed to a powerful relativistic jet oriented close to the line of sight.[12]

Moreover, in several occasions, γ-ray flares were observed when the daily flux was above 10−6 photon cm−2 s−1. This makes PKS 0537-286 the most distant γ-ray flaring blazar.[13] The broad-band emission from PKS 0537-286 was successfully modelled within a one-zone synchrotron and external inverse Compton scenario where the excess in optical and ultraviolet bands was interpreted as emission from bright thermal accretion disc.[2] Moreover, PKS 0537-286 shows an emission redshift of 3.11, a prominent absorption system at a redshift of 2.976, and a strong discontinuity at the Lyman-continuum edge in the absorption system.[3]

Between 2005 and 2007, archival data taken together with Fermi Large Area Telescope and by Swift, found that the γ -ray band in PKS 0537-286, has a much higher flux of 100 MeV, Fγ = (6 23 ± 0 56) 10-7 photon cm-2 s-1, that is found agreeable with the values of to Lγ = 246 x 1049 erg s-1 isotropic γ -ray luminosity. From the analysis, the X-ray emission in PKS 0537-286, contains a hard photon index measuring ΓX-ray ≤ 1.3, with a steady X-ray flux of 4 x 10-12 erg cm-2 s-1, unchanged for 12 years.[14]

Further observations[edit]

During the 2006 to 2008 multiwavelength campaign, the source of PKS 0537-286 was keep under observation by INTEGRAL. Since the Swift/BAT light curve in PKS 0537-286 exhibits constant flux level over nine months of exposure, time intervals were proposed by the INTEGRAL pointings.[15] In order to cover simultaneous X-ray and ultraviolet ranges, further observations were conducted on October 2006 and then carried out by Swift/XRT observations on February 2008. Simultaneously observations from, REM, GROND, and Palomar 60-inch telescope performed photometry on the quasar while on November 1, 2006, in the 3-20 keV band, RXTE PCA observed PKS 0537-286.[2]

Fermi-LAT observation and data analysis

In another observation conducted by Fermi-LAT, researchers had generated light curves in two methods in order to investigate the pattern variabilities of the source. Initially, the whole time interval was divided by 5-d intervals, with the photon index[disambiguation needed] and flux of PKS 0537-286 calculated by the unbinned analysis method from GTLIKE tool.[16] To get a better idea of the γ-ray flux evolution, the adaptively binned light curve was computed by researchers.[17] Through this method, they adjusted the bin widths above the optimal energy (Eopt) for a fixed value. When flux increases, the shorter intervals are then estimated, while for the intervals in quiescent/normal states, the time bins are wider. This shows the method is a dynamic tool for finding blazar flaring periods.[18][19]

Through these observations carried out, the light curve of (>Eopt = 168.19 MeV) in the γ-ray flux has a median level of (1 − 3) × 10−8 photon cm−2 s−1 with no major changes up to MJD 57740 even in several different occasions, the γ-ray flux still increased greatly. The light curve with 5-d (>100 MeV) and adaptive bins (>Eopt = 168.19 MeV) for the period when the source was active in the γ-ray band are shown to be corresponding with each other. The first flaring period was found between MJD 57876–57883 when the flux surges with a maximum of (5.26 ± 1.13) × 10−7 photon cm−2 s−1. Starting from MJD 59170, the source passed into an active emission state with several bright flaring periods shown between MJD 59204–59233, MJD 59301–59411, and MJD 59721–59738. The researchers also observed γ-ray flaring periods, in which the maximum γ-ray flux of the source reaches (6.32 ± 1.11) × 10−7 photon cm−2 s−1.[16]

NUSTAR and data analysis

A hard X-ray telescope in the 3–79 keV energy range,[20] NuSTAR with two focal plane modules (FPMs), FPMA, and FPMB, observed PKS 0537-286 on October 24, 2020 (MJD 59146.17) for 24.3 ks and in December 28, 2020 (MJD 59211.99) and for 97.1 ks.

When analyzing the data that is applied with the standard procedure and using NuSTAR spectra tool developed in 2022 according to Middei et al. (2022),[21] the spectra script downloads were used by researchers to look for the source's coordinates and extracting high-level scientific products for the detected sources using NUPRODUCTS routine. In the script, it automatically sets the source extraction region radius to be in a range of 30–70 arcsec. As for the background, the information is processed in an annulus centered on the source with a minimum separation[disambiguation needed] of 50 arcsec between the inner and outer radii. Then, researchers calculated the spectral analysis[disambiguation needed] by using XSPEC package to adopt Cash statistics .[22]

Looking at the analysis, the X-ray photon index[disambiguation needed] of PKS 0537−286 is alike in two of the same observations – 1.26 ± 0.06 and 1.26 ± 0.02 on MJD 59146.17 and MJD 59211.99, respectively. The X-ray flux between 3 and 10 keV evaluated by MJD 59146.17 is F3–10 keV = (2.72 ± 0.06) × 10−12 erg cm−2 s−1. With MJD 59211.99, the flux increased by one factor of 2, F3–10 keV = (5.10 ± 0.04) × 10−12erg cm−2 s−1. Similarly, the flux betwixt values of 10 and 30 keV also escalates in two observations, with corresponding values of F10–30 keV = (5.79 ± 0.20) × 10−12 erg cm−2 s−1 and F10–30 keV = (1.08 ± 0.01) × 10−11 erg cm−2 s−1. This shows that the source was in an enhanced state on December 28, 2020 within a 3.0–30 keV range.[16]

At redshift 3.10, PKS 0537-286 is one of the most powerful flat-spectrum radio quasars (FSRQs) when observed in the extragalactic γ-ray sky; the γ-ray luminosity of the source, time-averaged, is estimated to 1.90 × 1048 erg s−1 if researchers assumed a distance of 27.08 Gpc of the quasar. However, the source exhibits bright γ-ray flares in several periods when the flux becomes greater and the spectrum solidifies. During scintillating periods, the luminosity increases, above 1049 erg s−1; the maximum γ-ray luminosity corresponding to 6.14 × 1049 erg s−1. Alongside 113 adaptively binned intervals, the source luminosity was above 1049 erg s−1 in 25 intervals totaling 61.8 d upon the observation of bright γ-ray luminosity. For blazars like PKS 0537-286, such trends are observed regularly in different bands[23][24] likely explained by interplay between the acceleration and cooling of electrons.[16]

Black hole[edit]

The supermassive black hole in PKS 0537-286 has an estimation of 2 billion solar masses. This is thanks to a study conducted whom researchers inferred from its optical-ultraviolet bump, making PKS 0537-286 to contain one of the largest black holes.[25]

Researchers from Goddard Institute for Space Studies and the Merate Observatory in Italy, who studied blazars, found the particle jet originating from the black hole has a similar mass of Jupiter. The jet is revealed blasting towards intergalactic space, meaning an enormous amount of energy is leaving the black hole according to Fabrizio Tavecchio, one of the researchers. This finding is a major finding as it is important for astronomers to know how jets are produced in blazars.[26]

References[edit]

  1. ^ "Your NED Search Results". ned.ipac.caltech.edu. Retrieved 2024-05-23.
  2. ^ a b c d Bottacini, E.; Ajello, M.; Greiner, J.; Pian, E.; Rau, A.; Palazzi, E.; Covino, S.; Ghisellini, G.; Krühler, T.; Yoldaş, A. Küpcü; Cappelluti, N.; Afonso, P. (2010-01-01). "PKS 0537-286, carrying the information of the environment of SMBHs in the early Universe". Astronomy & Astrophysics. 509: A69. arXiv:0910.2463. Bibcode:2010A&A...509A..69B. doi:10.1051/0004-6361/200913260. ISSN 0004-6361.
  3. ^ a b Wright, A. E.; Peterson, B. A.; Jauncey, D. L.; Condon, J. J. (1978-12-01). "PKS 0537-286: a high-redshift QSO with an extreme Lyman-continuum cutoff". The Astrophysical Journal. 226: L61–L64. Bibcode:1978ApJ...226L..61W. doi:10.1086/182831. ISSN 0004-637X.
  4. ^ Zamorani, G.; Henry, J. P.; Maccacaro, T.; Tananbaum, H.; Soltan, A.; Avni, Y.; Liebert, J.; Stocke, J.; Strittmatter, P. A.; Weymann, R. J.; Smith, M. G.; Condon, J. J. (1981-04-01). "X-ray studies of quasars with the Einstein Observatory II". The Astrophysical Journal. 245: 357–374. Bibcode:1981ApJ...245..357Z. doi:10.1086/158815. ISSN 0004-637X.
  5. ^ Cappi, M.; Matsuoka, M.; Comastri, A.; Brinkmann, W.; Elvis, M.; Palumbo, G. G. C.; Vignali, C. (1997-03-01). "ASCA and ROSAT X-Ray Spectra of High-Redshift Radio-loud Quasars". The Astrophysical Journal. 478 (2): 492–510. arXiv:astro-ph/9610204. Bibcode:1997ApJ...478..492C. doi:10.1086/303817. ISSN 0004-637X.
  6. ^ Fiore, Fabrizio; Elvis, Martin; Giommi, Paolo; Padovani, Paolo (1998-01-01). "X-Ray Spectral Survey of WGACAT Quasars. I. Spectral Evolution and Low-Energy Cutoffs". The Astrophysical Journal. 492 (1): 79–90. arXiv:astro-ph/9708049. Bibcode:1998ApJ...492...79F. doi:10.1086/305024. ISSN 0004-637X.
  7. ^ Turner, M. J. L.; Abbey, A.; Arnaud, M.; Balasini, M.; Barbera, M.; Belsole, E.; Bennie, P. J.; Bernard, J. P.; Bignami, G. F.; Boer, M.; Briel, U.; Butler, I.; Cara, C.; Chabaud, C.; Cole, R. (2001-01-01). "The European Photon Imaging Camera on XMM-Newton: The MOS cameras". Astronomy & Astrophysics. 365 (1): L27–L35. arXiv:astro-ph/0011498. Bibcode:2001A&A...365L..27T. doi:10.1051/0004-6361:20000087. ISSN 0004-6361.
  8. ^ Sambruna, R. M.; Tavecchio, F.; Ghisellini, G.; Donato, D.; Holland, S. T.; Markwardt, C. B.; Tueller, J.; Mushotzky, R. F. (2007-11-01). "Swift Observations of High-Redshift Radio-loud Quasars". The Astrophysical Journal. 669 (2): 884–892. arXiv:0707.2925. Bibcode:2007ApJ...669..884S. doi:10.1086/521694. ISSN 0004-637X.
  9. ^ Abdollahi, S.; Acero, F.; Baldini, L.; Ballet, J.; Bastieri, D.; Bellazzini, R.; Berenji, B.; Berretta, A.; Bissaldi, E.; Blandford, R. D.; Bloom, E.; Bonino, R.; Brill, A.; Britto, R. J.; Bruel, P. (2022-06-01). "Incremental Fermi Large Area Telescope Fourth Source Catalog". The Astrophysical Journal Supplement Series. 260 (2): 53. arXiv:2201.11184. Bibcode:2022ApJS..260...53A. doi:10.3847/1538-4365/ac6751. ISSN 0067-0049.
  10. ^ Sowards-Emmerd, David; Romani, Roger W.; Michelson, Peter F.; Ulvestad, James S. (2004-07-01). "Blazar Counterparts for 3EG Sources at -40°". The Astrophysical Journal. 609 (2): 564–575. arXiv:astro-ph/0403692. Bibcode:2004ApJ...609..564S. doi:10.1086/421239. ISSN 0004-637X.
  11. ^ Hartman, R. C.; Bertsch, D. L.; Bloom, S. D.; Chen, A. W.; Deines-Jones, P.; Esposito, J. A.; Fichtel, C. E.; Friedlander, D. P.; Hunter, S. D.; McDonald, L. M.; Sreekumar, P.; Thompson, D. J.; Jones, B. B.; Lin, Y. C.; Michelson, P. F. (1999-07-01). "The Third EGRET Catalog of High-Energy Gamma-Ray Sources". The Astrophysical Journal Supplement Series. 123 (1): 79–202. Bibcode:1999ApJS..123...79H. doi:10.1086/313231. hdl:2060/19980237754. ISSN 0067-0049.
  12. ^ Jolley, E. J. D.; Kuncic, Z.; Bicknell, G. V.; Wagner, S. (2009-12-01). "Accretion discs in blazars". Monthly Notices of the Royal Astronomical Society. 400 (3): 1521–1526. arXiv:0908.2337. Bibcode:2009MNRAS.400.1521J. doi:10.1111/j.1365-2966.2009.15554.x. ISSN 0035-8711.
  13. ^ Li, Shang; Xia, Zi-Qing; Liang, Yun-Feng; Liao, Neng-Hui; Fan, Yi-Zhong (2018-02-01). "Fast γ-Ray Variability in Blazars beyond Redshift 3". The Astrophysical Journal. 853 (2): 159. arXiv:1710.02904. Bibcode:2018ApJ...853..159L. doi:10.3847/1538-4357/aaa3fb. ISSN 0004-637X.
  14. ^ Sahakyan, N.; Israyelyan, D.; Harutyunyan, G. (2020-12-01). "A Multiwavelength Study of Distant Blazar PKS 0537-286". Astrophysics. 63 (4): 459–469. Bibcode:2020Ap.....63..459S. doi:10.1007/s10511-020-09650-3. ISSN 0571-7256.
  15. ^ Ajello, M.; Greiner, J.; Kanbach, G.; Rau, A.; Strong, A. W.; Kennea, J. A. (May 2008). "BAT X-Ray Survey. I. Methodology and X-Ray Identification". The Astrophysical Journal. 678 (1): 102–115. arXiv:0712.2885. Bibcode:2008ApJ...678..102A. doi:10.1086/529418. ISSN 0004-637X.
  16. ^ a b c d Sahakyan, N; Harutyunyan, G; Israyelyan, D. "Origin of multiwavelength emission from flaring high redshift blazar PKS 0537-286". academic.oup.com. Retrieved 2024-05-23.
  17. ^ Lott, B.; Escande, L.; Larsson, S.; Ballet, J. (2012-08-01). "An adaptive-binning method for generating constant-uncertainty/constant-significance light curves with Fermi-LAT data". Astronomy and Astrophysics. 544: A6. arXiv:1201.4851. Bibcode:2012A&A...544A...6L. doi:10.1051/0004-6361/201218873. ISSN 0004-6361.
  18. ^ Rani, B.; Lott, B.; Krichbaum, T. P.; Fuhrmann, L.; Zensus, J. A. (2013-09-01). "Constraining the location of rapid gamma-ray flares in the flat spectrum radio quasar 3C 273". Astronomy and Astrophysics. 557: A71. arXiv:1307.0854. Bibcode:2013A&A...557A..71R. doi:10.1051/0004-6361/201321440. ISSN 0004-6361.
  19. ^ Sahakyan, N.; Baghmanyan, V.; Zargaryan, D. (2018-06-01). "Fermi-LAT observation of nonblazar AGNs". Astronomy and Astrophysics. 614: A6. arXiv:1801.09381. Bibcode:2018A&A...614A...6S. doi:10.1051/0004-6361/201732304. ISSN 0004-6361.
  20. ^ Harrison, Fiona A.; Craig, William W.; Christensen, Finn E.; Hailey, Charles J.; Zhang, William W.; Boggs, Steven E.; Stern, Daniel; Cook, W. Rick; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W.; Kim, Yunjin; Kitaguchi, Takao; Koglin, Jason E.; Madsen, Kristin K. (2013-06-01). "The Nuclear Spectroscopic Telescope Array (NuSTAR) High-energy X-Ray Mission". The Astrophysical Journal. 770 (2): 103. arXiv:1301.7307. Bibcode:2013ApJ...770..103H. doi:10.1088/0004-637X/770/2/103. ISSN 0004-637X.
  21. ^ Middei, R.; Giommi, P.; Perri, M.; Turriziani, S.; Sahakyan, N.; Chang, Y. L.; Leto, C.; Verrecchia, F. (2022-08-01). "The first hard X-ray spectral catalogue of Blazars observed by NuSTAR". Monthly Notices of the Royal Astronomical Society. 514 (3): 3179–3190. arXiv:2205.05089. Bibcode:2022MNRAS.514.3179M. doi:10.1093/mnras/stac1185. ISSN 0035-8711.
  22. ^ Cash, W. (1979-03-01). "Parameter estimation in astronomy through application of the likelihood ratio". The Astrophysical Journal. 228: 939–947. Bibcode:1979ApJ...228..939C. doi:10.1086/156922. ISSN 0004-637X.
  23. ^ Abdo, A. A.; Ackermann, M.; Ajello, M.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E. D.; Bogaert, G. (2010-02-01). "PKS 1502+106: A New and Distant Gamma-ray Blazar in Outburst Discovered by the Fermi Large Area Telescope". The Astrophysical Journal. 710 (1): 810–827. arXiv:0912.4029. Bibcode:2010ApJ...710..810A. doi:10.1088/0004-637X/710/1/810. ISSN 0004-637X.
  24. ^ Baghmanyan, V.; Gasparyan, S.; Sahakyan, N. (2017-10-01). "Rapid Gamma-Ray Variability of NGC 1275". The Astrophysical Journal. 848 (2): 111. arXiv:1709.03755. Bibcode:2017ApJ...848..111B. doi:10.3847/1538-4357/aa8c7b. ISSN 0004-637X.
  25. ^ Ghisellini, G.; Della Ceca, R.; Volonteri, M.; Ghirlanda, G.; Tavecchio, F.; Foschini, L.; Tagliaferri, G.; Haardt, F.; Pareschi, G.; Grindlay, J. (2010-06-01). "Chasing the heaviest black holes of jetted active galactic nuclei". Monthly Notices of the Royal Astronomical Society. 405 (1): 387–400. arXiv:0912.0001. Bibcode:2010MNRAS.405..387G. doi:10.1111/j.1365-2966.2010.16449.x. ISSN 0035-8711.
  26. ^ "Swift: News". swift.gsfc.nasa.gov. Retrieved 2024-05-23.