Jump to content

Retinoic acid receptor alpha

From Wikipedia, the free encyclopedia
(Redirected from RAR-alpha)
RARA
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesRARA, NR1B1, RAR, retinoic acid receptor alpha, RARalpha
External IDsOMIM: 180240; MGI: 97856; HomoloGene: 20262; GeneCards: RARA; OMA:RARA - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000964
NM_001024809
NM_001033603
NM_001145301
NM_001145302

NM_001176528
NM_001177302
NM_001177303
NM_009024
NM_001361954

RefSeq (protein)

NP_001169999
NP_001170773
NP_001170774
NP_033050
NP_001348883

Location (UCSC)Chr 17: 40.31 – 40.36 MbChr 11: 98.82 – 98.87 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Retinoic acid receptor alpha (RAR-α), also known as NR1B1 (nuclear receptor subfamily 1, group B, member 1), is a nuclear receptor that in humans is encoded by the RARA gene.[5][6]

NR1B1 is a gene with a protein product and has a chromosomal location of 17q21.2. RARA codes for the nuclear hormone receptor retinoic acid receptor, alpha subtype, a transcription factor. There are another two subtypes of RARs: beta and gamma subtypes.[7][8]

Function

[edit]

Retinoid signaling is transduced by two families of nuclear receptors, retinoic acid receptor (RAR) and retinoid X receptor (RXR), which form RXR/RAR heterodimers. In the absence of ligand, DNA-bound RXR/RARA represses transcription by recruiting the corepressors NCOR1, SMRT (NCOR2), and histone deacetylase. When ligand binds to the complex, it induces a conformational change allowing the recruitment of coactivators, histone acetyltransferases, and the basic transcription machinery.[9]

Retinoic acid receptor-alpha, the protein, interacts with retinoic acid, a derivative of vitamin A, which plays an important role in cell growth, differentiation, and the formation of organs in embryonic development.[8][10]

Once retinoic acid binds to the RAR, the heterodimer initiates transcription and allows for its target genes to be expressed. [10] 

Clinical significance

[edit]

RA signaling has been correlated with several signaling pathways in early embryonic development. First, it participates in the formation of the embryonic axis, which establishes symmetry in the offspring. RA also influences neural differentiation by regulating the expression of pro-neural induction factor Neurogenin 2 (Neurog2). RA affects cardiogenesis, as it plays a role specifically in the formation of the atrial chambers of the heart. RA also plays a role in the development of the pancreas, kidneys, lungs, and extremities.  [10]

Translocations that always involve rearrangement of the RARA gene are a cardinal feature of acute promyelocytic leukemia (APL; MIM 612376). The most frequent translocation is t(15,17)(q21;q22), which fuses the RARA gene with the PML gene.[11]

Acute promyeloid leukemia

[edit]

RARA plays an important role in the establishment of the immune system by inducing T-regulatory cells, promoting tolerance, and controlling the differentiation of immature immune cells in the bone marrow called promyelocytes into mature white blood cells.[12] The prevalence of this gene in the developing immune system leaves it subject to possible defects, the most common of which is a condition known as acute promyeloid leukemia (APL), caused by a somatic mutation described by the fusion of RARA and the PML gene located on chromosome 15.[13] This fusion results in the formation of the protein complex PML-RARα. Under normal circumstances, PML produces a tumor suppressing protein that works by inhibiting uncontrolled rapid cell growth. When the two proteins fuse together, their normal functions are hindered, resulting in the accumulation of promyelocytes in the bone marrow unable to differentiate past this immature phase.[13] This fusion makes up for the cause of 98% of APL cases, with some other rare mutations and fusions making up the other 2%.6 Current treatment approaches include all-trans-retinoic acid (ATRA) which works by targeting and degrading the PML-RARα protein complex, in addition to chemotherapy and platelet transfusions.[14]

Interactions

[edit]

Retinoic acid receptor alpha has been shown to interact with:

Genetic studies

[edit]

Knock-out mice studies showed that a deletion in one of the copies of the RARA gene did not create any observable defect, while deletion of both copies shows symptoms similar to that of vitamin A deficiency. This proved that all three subtypes of RARs work redundantly.[citation needed]

Ligands

[edit]
Antagonists

See also

[edit]

References

[edit]
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000131759Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000037992Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Giguere V, Ong ES, Segui P, Evans RM (1987). "Identification of a receptor for the morphogen retinoic acid". Nature. 330 (6149): 624–9. Bibcode:1987Natur.330..624G. doi:10.1038/330624a0. PMID 2825036. S2CID 4308015.
  6. ^ Anderson LA, Friedman L, Osborne-Lawrence S, Lynch E, Weissenbach J, Bowcock A, King MC (September 1993). "High-density genetic map of the BRCA1 region of chromosome 17q12-q21". Genomics. 17 (3): 618–23. doi:10.1006/geno.1993.1381. PMID 8244378.
  7. ^ "Gene symbol report | HUGO Gene Nomenclature Committee". www.genenames.org. Retrieved 2021-04-27.
  8. ^ a b "OMIM Entry - * 180240 - RETINOIC ACID RECEPTOR, ALPHA; RARA". www.omim.org. Retrieved 2021-04-27.
  9. ^ "Entrez Gene: retinoic acid receptor".
  10. ^ a b c Kam RK, Deng Y, Chen Y, Zhao H (March 2012). "Retinoic acid synthesis and functions in early embryonic development". Cell & Bioscience. 2 (1): 11. doi:10.1186/2045-3701-2-11. PMC 3325842. PMID 22439772.
  11. ^ Vitoux D, Nasr R, de The H (2007). "Acute promyelocytic leukemia: new issues on pathogenesis and treatment response". The International Journal of Biochemistry & Cell Biology. 39 (6): 1063–70. doi:10.1016/j.biocel.2007.01.028. PMID 17468032.
  12. ^ Mora JR, Iwata M, von Andrian UH (September 2008). "Vitamin effects on the immune system: vitamins A and D take centre stage". Nat Rev Immunol. 8 (9): 685–98. doi:10.1038/nri2378. PMC 2906676. PMID 19172691.
  13. ^ a b Liquori A, Ibañez M, Sargas C, Sanz MÁ, Barragán E, Cervera J (March 2020). "Acute Promyelocytic Leukemia: A Constellation of Molecular Events around a Single PML-RARA Fusion Gene". Cancers (Basel). 12 (3): 624. doi:10.3390/cancers12030624. PMC 7139833. PMID 32182684.
  14. ^ Stahl M, Tallman MS (December 2019). "Acute promyelocytic leukemia (APL): remaining challenges towards a cure for all". Leuk Lymphoma. 60 (13): 3107–15. doi:10.1080/10428194.2019.1613540. PMC 7479633. PMID 31842650.
  15. ^ Liu R, Takayama S, Zheng Y, Froesch B, Chen GQ, Zhang X, et al. (July 1998). "Interaction of BAG-1 with retinoic acid receptor and its inhibition of retinoic acid-induced apoptosis in cancer cells". The Journal of Biological Chemistry. 273 (27): 16985–92. doi:10.1074/jbc.273.27.16985. PMID 9642262.
  16. ^ a b McNamara P, Seo SB, Rudic RD, Sehgal A, Chakravarti D, FitzGerald GA (June 2001). "Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock". Cell. 105 (7): 877–89. doi:10.1016/S0092-8674(01)00401-9. PMID 11439184. S2CID 6251321.
  17. ^ Despouy G, Bastie JN, Deshaies S, Balitrand N, Mazharian A, Rochette-Egly C, et al. (February 2003). "Cyclin D3 is a cofactor of retinoic acid receptors, modulating their activity in the presence of cellular retinoic acid-binding protein II". The Journal of Biological Chemistry. 278 (8): 6355–62. doi:10.1074/jbc.M210697200. PMID 12482873.
  18. ^ Lee SK, Jung SY, Kim YS, Na SY, Lee YC, Lee JW (February 2001). "Two distinct nuclear receptor-interaction domains and CREB-binding protein-dependent transactivation function of activating signal cointegrator-2". Molecular Endocrinology. 15 (2): 241–54. doi:10.1210/mend.15.2.0595. PMID 11158331.
  19. ^ Lee SK, Anzick SL, Choi JE, Bubendorf L, Guan XY, Jung YK, et al. (November 1999). "A nuclear factor, ASC-2, as a cancer-amplified transcriptional coactivator essential for ligand-dependent transactivation by nuclear receptors in vivo". The Journal of Biological Chemistry. 274 (48): 34283–93. doi:10.1074/jbc.274.48.34283. PMID 10567404.
  20. ^ Ko L, Cardona GR, Chin WW (May 2000). "Thyroid hormone receptor-binding protein, an LXXLL motif-containing protein, functions as a general coactivator". Proceedings of the National Academy of Sciences of the United States of America. 97 (11): 6212–7. Bibcode:2000PNAS...97.6212K. doi:10.1073/pnas.97.11.6212. PMC 18584. PMID 10823961.
  21. ^ Dowell P, Ishmael JE, Avram D, Peterson VJ, Nevrivy DJ, Leid M (May 1999). "Identification of nuclear receptor corepressor as a peroxisome proliferator-activated receptor alpha interacting protein". The Journal of Biological Chemistry. 274 (22): 15901–7. doi:10.1074/jbc.274.22.15901. PMID 10336495.
  22. ^ Guidez F, Ivins S, Zhu J, Söderström M, Waxman S, Zelent A (April 1998). "Reduced retinoic acid-sensitivities of nuclear receptor corepressor binding to PML- and PLZF-RARalpha underlie molecular pathogenesis and treatment of acute promyelocytic leukemia". Blood. 91 (8): 2634–42. doi:10.1182/blood.V91.8.2634.2634_2634_2642. PMID 9531570.
  23. ^ Dong S, Tweardy DJ (April 2002). "Interactions of STAT5b-RARalpha, a novel acute promyelocytic leukemia fusion protein, with retinoic acid receptor and STAT3 signaling pathways". Blood. 99 (8): 2637–46. doi:10.1182/blood.V99.8.2637. PMID 11929748.
  24. ^ Hong SH, David G, Wong CW, Dejean A, Privalsky ML (August 1997). "SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor alpha (RARalpha) and PLZF-RARalpha oncoproteins associated with acute promyelocytic leukemia". Proceedings of the National Academy of Sciences of the United States of America. 94 (17): 9028–33. Bibcode:1997PNAS...94.9028H. doi:10.1073/pnas.94.17.9028. PMC 23013. PMID 9256429.
  25. ^ Hu X, Chen Y, Farooqui M, Thomas MC, Chiang CM, Wei LN (January 2004). "Suppressive effect of receptor-interacting protein 140 on coregulator binding to retinoic acid receptor complexes, histone-modifying enzyme activity, and gene activation". The Journal of Biological Chemistry. 279 (1): 319–25. doi:10.1074/jbc.M307621200. PMID 14581481.
  26. ^ Farooqui M, Franco PJ, Thompson J, Kagechika H, Chandraratna RA, Banaszak L, Wei LN (February 2003). "Effects of retinoid ligands on RIP140: molecular interaction with retinoid receptors and biological activity". Biochemistry. 42 (4): 971–9. doi:10.1021/bi020497k. PMID 12549917.
  27. ^ L'Horset F, Dauvois S, Heery DM, Cavaillès V, Parker MG (November 1996). "RIP-140 interacts with multiple nuclear receptors by means of two distinct sites". Molecular and Cellular Biology. 16 (11): 6029–36. doi:10.1128/MCB.16.11.6029. PMC 231605. PMID 8887632.
  28. ^ Seol W, Choi HS, Moore DD (May 1996). "An orphan nuclear hormone receptor that lacks a DNA binding domain and heterodimerizes with other receptors". Science. 272 (5266): 1336–9. Bibcode:1996Sci...272.1336S. doi:10.1126/science.272.5266.1336. PMID 8650544. S2CID 32853062.
  29. ^ Seol W, Hanstein B, Brown M, Moore DD (October 1998). "Inhibition of estrogen receptor action by the orphan receptor SHP (short heterodimer partner)". Molecular Endocrinology. 12 (10): 1551–7. doi:10.1210/mend.12.10.0184. PMID 9773978.
  30. ^ Perlmann T, Jansson L (April 1995). "A novel pathway for vitamin A signaling mediated by RXR heterodimerization with NGFI-B and NURR1". Genes & Development. 9 (7): 769–82. doi:10.1101/gad.9.7.769. PMID 7705655.
  31. ^ Zhong S, Delva L, Rachez C, Cenciarelli C, Gandini D, Zhang H, et al. (November 1999). "A RA-dependent, tumour-growth suppressive transcription complex is the target of the PML-RARalpha and T18 oncoproteins". Nature Genetics. 23 (3): 287–95. doi:10.1038/15463. PMID 10610177. S2CID 23613492.
  32. ^ Benkoussa M, Brand C, Delmotte MH, Formstecher P, Lefebvre P (July 2002). "Retinoic acid receptors inhibit AP1 activation by regulating extracellular signal-regulated kinase and CBP recruitment to an AP1-responsive promoter". Molecular and Cellular Biology. 22 (13): 4522–34. doi:10.1128/MCB.22.13.4522-4534.2002. PMC 133906. PMID 12052862.
  33. ^ Bugge TH, Pohl J, Lonnoy O, Stunnenberg HG (April 1992). "RXR alpha, a promiscuous partner of retinoic acid and thyroid hormone receptors". The EMBO Journal. 11 (4): 1409–18. doi:10.1002/j.1460-2075.1992.tb05186.x. PMC 556590. PMID 1314167.
  34. ^ Kim HJ, Yi JY, Sung HS, Moore DD, Jhun BH, Lee YC, Lee JW (September 1999). "Activating signal cointegrator 1, a novel transcription coactivator of nuclear receptors, and its cytosolic localization under conditions of serum deprivation". Molecular and Cellular Biology. 19 (9): 6323–32. doi:10.1128/mcb.19.9.6323. PMC 84603. PMID 10454579.
  35. ^ He B, Wilson EM (March 2003). "Electrostatic modulation in steroid receptor recruitment of LXXLL and FXXLF motifs". Molecular and Cellular Biology. 23 (6): 2135–50. doi:10.1128/MCB.23.6.2135-2150.2003. PMC 149467. PMID 12612084.
  36. ^ Zeng M, Kumar A, Meng G, Gao Q, Dimri G, Wazer D, et al. (November 2002). "Human papilloma virus 16 E6 oncoprotein inhibits retinoic X receptor-mediated transactivation by targeting human ADA3 coactivator". The Journal of Biological Chemistry. 277 (47): 45611–8. doi:10.1074/jbc.M208447200. PMID 12235159.
  37. ^ Martin PJ, Delmotte MH, Formstecher P, Lefebvre P (September 2003). "PLZF is a negative regulator of retinoic acid receptor transcriptional activity". Nuclear Receptor. 1 (1): 6. doi:10.1186/1478-1336-1-6. PMC 212040. PMID 14521715.

Further reading

[edit]

This article incorporates text from the United States National Library of Medicine, which is in the public domain.