Routh–Hurwitz matrix
In mathematics, the Routh–Hurwitz matrix,[1] or more commonly just Hurwitz matrix, corresponding to a polynomial is a particular matrix whose nonzero entries are coefficients of the polynomial.
Hurwitz matrix and the Hurwitz stability criterion
[edit]Namely, given a real polynomial
the square matrix
is called Hurwitz matrix corresponding to the polynomial . It was established by Adolf Hurwitz in 1895 that a real polynomial with is stable (that is, all its roots have strictly negative real part) if and only if all the leading principal minors of the matrix are positive:
and so on. The minors are called the Hurwitz determinants. Similarly, if then the polynomial is stable if and only if the principal minors have alternating signs starting with a negative one.
Example
[edit]As an example, consider the matrix
and let
be the characteristic polynomial of . The Routh–Hurwitz matrix[note 1] associated to is then
The leading principal minors of are
Since the leading principal minors are all positive, all of the roots of have negative real part. Moreover, since is the characteristic polynomial of , it follows that all the eigenvalues of have negative real part, and hence is a Hurwitz-stable matrix.[note 1]
See also
[edit]Notes
[edit]References
[edit]- ^ Horn, Roger; Johnson, Charles (1991). Topics in matrix analysis. p. 101. ISBN 0-521-30587-X.
- Asner, Bernard A. Jr. (1970). "On the Total Nonnegativity of the Hurwitz Matrix". SIAM Journal on Applied Mathematics. 18 (2): 407–414. doi:10.1137/0118035. JSTOR 2099475.
- Dimitrov, Dimitar K.; Peña, Juan Manuel (2005). "Almost strict total positivity and a class of Hurwitz polynomials". Journal of Approximation Theory. 132 (2): 212–223. doi:10.1016/j.jat.2004.10.010. hdl:11449/21728.
- Gantmacher, F. R. (1959). Applications of the Theory of Matrices. New York: Interscience.
- Hurwitz, A. (1895). "Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Teilen besitzt". Mathematische Annalen. 46 (2): 273–284. doi:10.1007/BF01446812. S2CID 121036103.
- Lehnigk, Siegfried H. (1970). "On the Hurwitz matrix". Zeitschrift für Angewandte Mathematik und Physik. 21 (3): 498–500. Bibcode:1970ZaMP...21..498L. doi:10.1007/BF01627957. S2CID 123380473.