String topology

From Wikipedia, the free encyclopedia

String topology, a branch of mathematics, is the study of algebraic structures on the homology of free loop spaces. The field was started by Moira Chas and Dennis Sullivan (1999).

Motivation[edit]

While the singular cohomology of a space has always a product structure, this is not true for the singular homology of a space. Nevertheless, it is possible to construct such a structure for an oriented manifold of dimension . This is the so-called intersection product. Intuitively, one can describe it as follows: given classes and , take their product and make it transversal to the diagonal . The intersection is then a class in , the intersection product of and . One way to make this construction rigorous is to use stratifolds.

Another case, where the homology of a space has a product, is the (based) loop space of a space . Here the space itself has a product

by going first through the first loop and then through the second one. There is no analogous product structure for the free loop space of all maps from to since the two loops need not have a common point. A substitute for the map is the map

where is the subspace of , where the value of the two loops coincides at 0 and is defined again by composing the loops.

The Chas–Sullivan product[edit]

The idea of the Chas–Sullivan product is to now combine the product structures above. Consider two classes and . Their product lies in . We need a map

One way to construct this is to use stratifolds (or another geometric definition of homology) to do transversal intersection (after interpreting as an inclusion of Hilbert manifolds). Another approach starts with the collapse map from to the Thom space of the normal bundle of . Composing the induced map in homology with the Thom isomorphism, we get the map we want.

Now we can compose with the induced map of to get a class in , the Chas–Sullivan product of and (see e.g. Cohen & Jones (2002)).

Remarks[edit]

  • As in the case of the intersection product, there are different sign conventions concerning the Chas–Sullivan product. In some convention, it is graded commutative, in some it is not.
  • The same construction works if we replace by another multiplicative homology theory if is oriented with respect to .
  • Furthermore, we can replace by . By an easy variation of the above construction, we get that is a module over if is a manifold of dimensions .
  • The Serre spectral sequence is compatible with the above algebraic structures for both the fiber bundle with fiber and the fiber bundle for a fiber bundle , which is important for computations (see Cohen, Jones & Yan (2004) and Meier (2010)).

The Batalin–Vilkovisky structure[edit]

There is an action by rotation, which induces a map

.

Plugging in the fundamental class , gives an operator

of degree 1. One can show that this operator interacts nicely with the Chas–Sullivan product in the sense that they form together the structure of a Batalin–Vilkovisky algebra on . This operator tends to be difficult to compute in general. The defining identities of a Batalin-Vilkovisky algebra were checked in the original paper "by pictures." A less direct, but arguably more conceptual way to do that could be by using an action of a cactus operad on the free loop space .[1] The cactus operad is weakly equivalent to the framed little disks operad[2] and its action on a topological space implies a Batalin-Vilkovisky structure on homology.[3]

Field theories[edit]

The pair of pants

There are several attempts to construct (topological) field theories via string topology. The basic idea is to fix an oriented manifold and associate to every surface with incoming and outgoing boundary components (with ) an operation

which fulfills the usual axioms for a topological field theory. The Chas–Sullivan product is associated to the pair of pants. It can be shown that these operations are 0 if the genus of the surface is greater than 0 (Tamanoi (2010)).

References[edit]

  1. ^ Voronov, Alexander (2005). "Notes on universal algebra". Graphs and Patterns in Mathematics and Theoretical Physics (M. Lyubich and L. Takhtajan, eds.). Providence, RI: Amer. Math. Soc. pp. 81–103.
  2. ^ Cohen, Ralph L.; Hess, Kathryn; Voronov, Alexander A. (2006). "The cacti operad". String topology and cyclic homology. Basel: Birkhäuser. ISBN 978-3-7643-7388-7.
  3. ^ Getzler, Ezra (1994). "Batalin-Vilkovisky algebras and two-dimensional topological field theories". Comm. Math. Phys. 159 (2): 265–285. arXiv:hep-th/9212043. Bibcode:1994CMaPh.159..265G. doi:10.1007/BF02102639. S2CID 14823949.

Sources[edit]