Swift–Hohenberg equation

From Wikipedia, the free encyclopedia

The Swift–Hohenberg equation (named after Jack B. Swift and Pierre Hohenberg) is a partial differential equation noted for its pattern-forming behaviour. It takes the form

where u = u(x, t) or u = u(x, y, t) is a scalar function defined on the line or the plane, r is a real bifurcation parameter, and N(u) is some smooth nonlinearity.

The equation is named after the authors of the paper,[1] where it was derived from the equations for thermal convection.

The webpage of Michael Cross[2] contains some numerical integrators which demonstrate the behaviour of several Swift–Hohenberg-like systems.

Another example where the equation appears is in the study of wrinkling morphology and pattern selection in curved elastic bilayer materials.[3][4]

See also[edit]

References[edit]

  1. ^ J. Swift; P.C. Hohenberg (1977). "Hydrodynamic fluctuations at the convective instability". Phys. Rev. A. 15 (1): 319–328. Bibcode:1977PhRvA..15..319S. doi:10.1103/PhysRevA.15.319.
  2. ^ Java applet demonstrations
  3. ^ Stoop, Norbert; Lagrange, Romain; Terwagne, Denis; Reis, Pedro M.; Dunkel, Jörn (March 2015). "Curvature-induced symmetry breaking determines elastic surface patterns". Nature Materials. 14 (3): 337–342. doi:10.1038/nmat4202. ISSN 1476-1122.
  4. ^ Lewin, Sarah (8 April 2015). "A Grand Theory of Wrinkles". Quanta Magazine.