Jump to content

Template:Infobox mathematical function/doc

From Wikipedia, the free encyclopedia
name
[[File:{{{image}}}|frameless]]
Domain, codomain and image
Domaindomain
Codomaincodomain
Imagerange
Basic features
Parityparity
Periodperiod
Specific values
At zerozero
Value at +∞plusinf
Value at −∞minusinf
Maximamax
Minimamin
Value at vr1f1
Value at vr2f2
Value at [...][...]
Value at vr5f5
Specific features
Asymptoteasymptote
Rootroot
Critical pointcritical
Inflection pointinflection
Fixed pointfixed

notes

Blank syntax

[edit]
{{Infobox mathematical function
| name = 
| image= |imagesize= <!--(default 220px)--> |imagealt=

| parity= |domain= |codomain= |range= |period=

| zero= |plusinf= |minusinf= |max= |min=
| vr1= |f1= |vr2= |f2= |vr3= |f3= |vr4= |f4= |vr5= |f5=

| asymptote= |root= |critical= |inflection= |fixed=

| notes = 
}}

Parameters

[edit]
  • Pairs VR1-f1, f1-VR2, etc. are used for labeling specific value functions. Suppose a function at the point e has a value of 2e and that this point is because of something specific. In this case you should put that as VR1 = eand f1 = 2e. For the next point is used a couple of VR2-f2, etc. If you run out of points (five currently available), ask for more.
  • Variables heading1, heading2, heading3 define whether some of the headlines basic properties, specific values, etc. be displayed. If you do not want a title to be displayed, simply delete the variable from the template. Set the value of the variable to 0 or anything will not prevent the display title.
  • Variables plusinf and minusinf indicate the value function at + ∞ and - ∞.
  • root is the x-intercept, critical is the critical point(s), inflection is inflection point(s)
  • fixed is fixed point(s)

Example

[edit]

The code below produces the box opposite:

Sine
General information
General definition
Motivation of inventionIndian astronomy
Date of solutionGupta period
Fields of applicationTrigonometry, Integral transform, etc.
Domain, codomain and image
Domain(−, +) a
Image[−1, 1] a
Basic features
Parityodd
Period2π
Specific values
At zero0
Maxima(2kπ + π/2, 1)b
Minima(2kππ/2, −1)
Specific features
Rootkπ
Critical pointkπ + π/2
Inflection pointkπ
Fixed point0
Related functions
ReciprocalCosecant
InverseArcsine
Derivative
Antiderivative
Other Relatedcos, tan, csc, sec, cot
Series definition
Taylor series
Generalized continued fraction

Gamma
The gamma function along part of the real axis
General information
General definition,
Deriver of General definitionDaniel Bernoulli
Motivation of inventionInterpolation for factorial function
Date of solution1720s
ExtendsFactorial function
Fields of applicationProbability, statistics, combinatorics
Main applicationsprobability-distribution functions
Domain, codomain and image
Domain - ℤ0-
Image
Basic features
ParityNot even and not odd
PeriodNo
Analytic?Yes
Meromorphic?Yes
Holomorphic?Yes except at ℤ0-
Specific values
MaximaNo
MinimaNo
Value at +
Value at 0-Not defined
Specific features
RootNo
Critical point0-
Inflection point0-
Fixed point 1
Poles0-
Transform
Corresponding transformMellin transform
Corresponding transform formula
{{Infobox mathematical function
| name = Sine
| image = Sinus.svg
| parity=odd |domain=(-∞,∞) |range=[-1,1] |period=| zero=0 |plusinf= |minusinf= |max=((2k+½)π,1) |min=((2k-½)π,-1)
| asymptote= |root=|critical=kπ-π/2 |inflection=|fixed=0
| notes = Variable k is an [[integer]].
}}

Tracking category

[edit]

See also

[edit]