Jump to content

User:Amirani1746/sandbox7

From Wikipedia, the free encyclopedia

Amirani1746/sandbox7
Temporal range: Hettangian-Toarcian
201.3–175.6 Ma
Mounted skeleton of T. trigonodon in metal frame at the State Museum of Natural History Stuttgart, Germany
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Reptilia
Order: Ichthyosauria
Family: Temnodontosauridae
McGowan, 1974
Genus: Temnodontosaurus
Lydekker, 1889
Type species
Temnodontosaurus platyodon
Other species
List
Synonyms
List of synonyms
  • Synonyms of genus[1][2]
    Synonyms of T. platyodon[3][4][5][2]
      • Ichthyosaurus platyodon Conybeare, 1822
      • Ichthyosaurus chiroligostinus Hawkins, 1834
      • Ichthyosaurus lonchiodon Owen, 1840
      • Leptopterygius lonchiodon von Huene, 1922
      • Leptopterygius platyodon von Huene, 1922
      • Proteosaurus platyodon Hay, 1902
      • Temnodontosaurus risor McGowan, 1974
    Synonyms of T. trigonodon[6]
      • Ichthyosaurus trigonodon von Theodori, 1843
      • Ichthyosaurus ingens von Theodori, 1854
      • Ichthyosaurus multiscissus Quenstedt, 1885
      • Ichthyosaurus burgundiae Gaudry, 1892
      • Leptopterygius trigonodon von Huene, 1931
      • Leptopterygius burgundiae McGowan, 1979
      • Temnodontosaurus burgundiae McGowan, 1996
    Synonymes of T. crassimanus[7]
      • Ichthyosaurus crassimanus Blake, 1876
    Synonyms of T. zetlandicus[8]
      • Ichthyosaurus zetlandicus Seeley, 1880
      • Ichthyosaurus longifrons Owen, 1881
      • Stenopterygius zetlandicus von Huene, 1922
    Synonyms of T. nuertingensis[9]
      • Ichthyosaurus bellicosus Fraas, 1926
      • Leptopterygius nürtingensis von Huene, 1931

Temnodontosaurus (meaning "cutting-tooth lizard") is an extinct genus of large ichthyosaurs that lived during the Lower Jurassic in what is now Europe and possibly Chile. The first known fossil is a specimen consisting of a complete skull and partial skeleton discovered on a cliff by Joseph and Mary Anning around the early 1810s in the Dorset county, England. The anatomy of this specimen was subsequently analyzed in a series of articles written by Everard Home between 1814 and 1819, making it the very first ichthyosaur to have been scientifically described. In 1822, the specimen was assigned to the genus Ichthyosaurus by William Conybeare, and more precisely to the species I. platyodon. Noting the large dental differences with other species of Ichthyosaurus, Richard Lydekker suggested in 1889 moving this species into a separate genus, which he named Temnodontosaurus. While many species have been assigned to the genus, only five are currently recognized as valid, the others being considered as synonymous, doubtful or possibly belonging to other taxa.

Generally estimated at 9 m (30 ft) long, Temnodontosaurus is one of the largest known ichthyosaurs, although not as imposing as some Triassic forms. Some specimens assigned to the genus may have reached larger measurements. As an ichthyosaur, Temnodontosaurus had flippers for limbs and a fin on the tail. Boasting eye sockets measuring more than 25 cm (9.8 in) wide, Temnodontosaurus quite possibly had the largest eyes known in the entire animal kingdom, rivaling in size those of the colossal squid. The snout appears to be longer than the mandible, being equipped with several sharp teeth (hence its name). On the basis of numerous very complete skeletons, it is estimated that the animal had at least more than 40 presacral vertebrae. Temnodontosaurus is a basal representative of the parvipelvian subgroup, in addition to being its largest representative. A monotypic family, Temnodontosauridae, was even established in 1974 to include the genus. The various phylogenetic analyzes as well as the diagnostic problems concerning it make it for the moment a polyphyletic taxon (unnatural grouping), and therefore needs to be revised.

Research history[edit]

Discovery and identification[edit]

Drawn skull of a marine reptile on a white background.
Drawn postcranial skeleton of a marine reptile on a white background.
Illustrations by Everard Home of the first known specimen of T. platyodon (NHMUK PV R1158), discovered by Joseph and Mary Anning at Black Ven

Temnodontosaurus is historically the very first ichthyosaur to have been scientifically described.[10][11] Around 1810,[a] a certain Joseph Anning discovered the skull of a large marine reptile on the cliffs of Black Ven, between the town of Lyme Regis and the village of Charmouth, two localities located in the county of Dorset, in the south of England. The remaining skeleton was later discovered by his sister, the now famous Mary Anning, in 1812. Although other ichthyosaur skeletons have been discovered locally and elsewhere, this particular specimen was the first to attract attention of the scientific community. After the discovery was announced in the press, the specimen was purchased by the lord of a local manor, Henry Hoste Henley, for a price of £23. Subsequently, Henley passed the fossils on to the naturalist William Bullock, who put them on display in the collections of his museum in London. In 1819, Bullock's own collection was sold to the Natural History Museum in London for a price of around £47. The specimen, now cataloged as NHMUK PV R1158, is still currently housed at this museum, although the postcranial remains have since been lost.[4][12][13][11][14]

Beginning in 1814, Everard Home wrote a series of six papers for the Royal Society describing the specimen, initially identifying it as a crocodile.[15] Perplexed as to the real nature of the fossil, Home kept changing his mind about its classification, thinking that it would be a fish, then as an animal sharing affinities with the platypus, which was then recently described at that time. Finally, in 1819, he thought that the fossil represented an animal that embodied an intermediate form between salamanders and lizards, which led him to erect the genus name Proteosaurus (originally written as Proteo-Saurus).[16] In 1821, Henry De la Beche and his colleague William Daniel Conybeare made the very first scientific description of Ichthyosaurus, but did not name any species.[17] Although being initially a nomen nudum, this generic name was already proposed in 1818 by Charles Konig, but was thus chosen as the definitive scientific name of this genus, Proteosaurus having since become a nomen oblitum.[11] In their article, De la Beche and Conybeare refer several additional fossils discovered at Black Ven to this genus, also including the specimen originally described by Home.[17] It was in 1822 that De la Beche named three species of Ichthyosaurus on the basis of several anatomical differences distinguishing the specimens, one of them being I. platyodon. He nevertheless announces that future descriptions will be done with the help of Conybeare.[18] However, it was Conybeare himself who described the fossils the same year, attributing the largest specimens to I. platyodon,[19] The specific name platyodon comes from the Ancient Greek πλατύς (platús, "flat", "broad"), and ὀδούς (odoús, "tooth"),[20] all meaning "flat teeth", in reference to the rather distinctive dentition of this species.[21]

Ichthyosaur fossils displayed behind a large display case
Various fossil specimens of T. platyodon on display at the Natural History Museum in London, England. In the center, the neotype skeleton (NHMUK PV R2003), with the first specimen discovered (NHMUK PV R1158) being present at the bottom left. The vertebrae at the bottom right come from another individual

In 1889, Henry Alleyne Nicholson and Richard Lydekker published a two-volume work that served as an introduction to the rules of paleontology for students. However, it is in the second volume that the two paleontologists give a very detailed description of numerous prehistoric vertebrates, and during which the taxonomy of I. platyodon takes another direction. Indeed, in his correction notes, Lydekker notices that the teeth of I. platyodon have great differences from those of other previously recognized species of Ichthyosaurus and suggest that the latter could be the type species of a completely new genus of ichthyosaurs, which he names Temnodontosaurus.[22][b] This generic name is formed from the Ancient Greek τέμνω (temnō, "to cut"),[24] ὀδούς (odoús, "tooth"),[20] and σαῦρος (saûros, "lizard"),[25] to give "cutting-tooth lizard".[26][27] In a broad review of fossil vertebrates published in 1902, Oliver Perry Hay suggested that because the name Proteosaurus technically took precedence over Ichthyosaurus, he then displaced I. platyodon as the type species of that genus, then renamed Proteosaurus platyodon. He also erects the family Proteosauridae for this reason, relegating Ichthyosauridae as a junior synonym.[3] In 1972, Christopher McGowan again used this combination proposed by Hay (although not mentioned),[28][29] but the latter revised his judgment two years later, in 1974, in which he moved this species to Temnodontosaurus, as originally proposed by Lydekker.[4] The holotype of Temnodontosaurus platyodon consisted basically of a single tooth which was preserved by the Geological Society of London.[30] As the latter has since been noted as lost in 1960, McGowan designates specimen NHMUK PV R2003 as the neotype of this taxon.[4][2] This specimen, already mentioned as a representative of the species by Richard Owen in 1881,[31] was originally discovered and partly collected by Mary Anning in July 1832 in Lyme Regis.[32] After the discovery, she sold the find to Thomas Hawkins, who himself sold the specimen to the Natural History Museum in London in 1834 for a price of £210.[33]

Other species[edit]

Recognized species[edit]

PB 1, the holotype specimen of T. trigonodon, at the Banz Abbey Museum, Bad Staffelstein, in Bavaria, Germany

In 1843, Carl von Theodori [de] describes a new species of Ichthyosaurus, I. trigonodon, which he describes as "colossal", based on an imposing specimen comprising a complete skull and a partial postcranial skeleton discovered in the town of Holzmaden, in the state of Baden-Württemberg, Germany.[34] The specific name comes from Ancient Greek τρίγωνον (trígônon, "triangle")[35] and ὀδούς (odoús, "tooth"),[20] in reference to the dental crown which is visibly triangular in this species.[7] In 1854, von Theodori made a much more in-depth description of the holotype specimen.[36] In 1889, only some time before he established the genus Temnodontosaurus, Lydekker noted that the dentition of I. trigonodon is quite similar to that of I. platyodon.[37] Based on these dental characteristics, he moved this species to the genus Temnodontosaurus the following year, consequently being renamed T. trigonodon.[38] It is one of the most documented species of the genus, being known from numerous very complete specimens discovered for the majority of them in Germany and France,[7] with a possible occurrence of a large specimen discovered in England[32]

In 1857, an almost complete skeleton of a large ichthyosaur was discovered north of the English town of Whitby, located in the Yorkshire county. The latter is also found near another skeleton, that of a pliosaur, which is today recognized as the holotype specimen of Rhomaleosaurus cramptoni. Shortly after its discovery, the ichthyosaurian skeleton was subsequently sent to the Yorkshire Museum, where it was cataloged as YORYM 497.[39][40] The following year, 1858, Owen examined the specimen and classified it as distinct from I. platyodon, attributing it to a completely new species which he named I. crassimanus. However, the latter has never been scientifically described by Owen,[41][39] although it is briefly mentioned in a work by John Phillips and Robert Etheridge published in 1875.[42] It was in 1876 that John Frederick Blake made the first scientific description of the animal, although he did so only very briefly.[43] In 1889, Lydekker considered this species as a potential junior synonym of I. trigonodon,[37] an opinion which was followed by numerous authors until around the beginning of the 20th century.[39] In 1930, Sidney Melmore made the first in-depth description of I. crassimanus based on the holotype specimen, restoring the distinct status of the species.[41] In his revision published in 1974, McGowan synonymized I. crassimanus with the proposed taxon Stenopterygius acutirostis, also attributing other specimens discovered in the original locality.[4] In 2003, McGowan and Ryosuke Motani suggested that all specimens historically attributed to I. crassimanus appeared sufficiently different from T. platyodon and T. trigonodon to belong to a distinct species of the genus Temnodontosaurus, being renamed T. crassimanus. However, they note that further research could question its validity.[44] However, in 2020 and 2021 respectively, a thesis and a study redescribing the specimens attributed to T. crassimanus formally maintain its validity and its membership in this genus.[45][40]

CAMSM J35176, the holotype skull of T. zetlandicus

In 1880, Harry Govier Seeley described the species I. zetlandicus on the basis of a well-preserved skull loaned by an Earl of Shetland (hence its name) around an unspecified date to the Sedgwick Museum of Earth Sciences in Cambridge, in the Cambridgeshire county. This skull, cataloged as CAMSM J35176, was discovered in the coasts of Whitby, near the locality where T. crassimanus was already discovered.[46] In 1922, Friedrich von Huene moved the species within Stenopterygius.[47] In 1974, McGowan considered S. zetlandicus as a synonym of S. acutirostris,[4] before this species was itself synonymized with T. acutirostris from 1997.[9][48] In 2022, Antoine Laboury and his colleagues reestablished the validity of the species but moved it to the genus Temnodontosaurus, being renamed T. zetlandicus. In their description, they attribute another specimen to the taxon, cataloged as MNHNL TU885, a partial skull which was originally discovered in Schouweiler, southern Luxembourg.[8]

In 1931, von Huene described a new species of the genus Leptopterygius,[c] L. nürtingensis, based on a skull and some postcranial remains of a single specimen discovered in a quarry in the town of Nürtingen (hence its name), Baden-Württemberg, Germany.[50][51] This specimen, cataloged as SMNS 13488, is mentioned for the first time in a work by Eberhard Fraas published posthumously in 1919, in which the author considers it to be the representative of an undetermined species of Ichthyosaurus. In another work also published posthumously in 1926, Fraas attributed this specimen to a proposed new species which he named I. bellicosus. Fraas was initially expected to carry out the first scientific description of this taxon, but the latter's premature death in 1915 prevented this project from being achieved. Thus, in the absence of a scientific description, the name I. bellicosus is seen as a nomen nudum, and therefore does not have priority over L. nürtingensis.[9] Although L. nürtingensis was only officially described in 1931 by von Huene,[50] the taxon was already mentioned a year earlier by the same author in an article concerning the ribs of the holotype specimen,[52], which have since been noted as lost.[53] In 1939, Oskar Kuhn assimilated an incomplete specimen discovered in Aue-Fallstein, Lower Saxony, to this species.[54] However, Kuhn did not present sufficient evidence to confirm his claims, and the specimen has since been viewed as indeterminate.[9] In 1979, McGowan carried out a large revision of the ichthyosaurs known from Germany, in which he classified L. nürtingensis as a nomen dubium.[55] In 1997, Michael W. Maisch and Axel Hungerbühler formally criticized McGowan's view, given that the holotype specimen is preserved in an excellent state of conservation and is easily diagnosable. He then redescribed this specimen and considered it to be attributable to Temnodontosaurus. In their analysis, the authors change the typography of the species nürtingensis to nuertingensis, due to rule 32.C of the ICZN requiring it.[9] The species is again considered a nomen dubium by McGowan and Motani in 2003,[56] but its validity as well as its belonging to this genus and maintained in subsequent studies.[53][8][57]

Dubious species[edit]

Skull of a large marine reptile from the ichthyosaur group
Drawing of a large dolphin-like gray marine reptile, side view
Holotype skull and life restoration of T. eurycephalus.

In 1881, Owen attributed a large isolated skull discovered at Lyme Regis, cataloged as NHMUK PV R1157,[4][58] to the newly erected species of the genus Ichthyosaurus, I. breviceps.[59] In 1922, von Huene moved this species to the genus Eurypterygius,[60] a taxon which is itself recognized as a junior synonym of Ichthyosaurus.[61] Although I. breviceps is still recognized as belonging to this genus, the large skull historically attributed to the species has large differences with the holotype specimen.[62] Noting this, McGowan redescribed this specimen in more detail and made it the holotype of an entirely new species of Temnodontosaurus, T. eurycephalus. The specific name comes from the Ancient Greek ευρύς (eurús, "broad"), and κεφαλή (kephalế, "head"), all meaning "broad head", in reference to the cranial morphology of the taxon.[4]

In 1984, an almost complete skeleton of a large ichthyosaur was discovered in the Lafarge quarries in the French commune of Belmont-d'Azergues, located near Lyon. Although the specimen is mentioned in a detailed biostratigraphic analysis of the Lafarge quarries published in 1991,[63] it was in 2012 when the fossil, uncatalogued but stored in the Saint-Pierre-la-Palud local mining museum [fr], was officially designated as the holotype of the new species T. azerguensis by Jeremy E. Martin and his colleagues. The specific name comes from the Azergues, a river located near the site of the discovery.[64]

In 2014, the American paleontologist Darren Naish expressed doubts in a blog in the journal Scientific American about the attribution of these two species to Temnodontosaurus, noting their large anatomical differences highlighting the need for a taxonomic revision of this genus.[65] A similar observation is shared in the study describing T. zetlandicus in 2022, with the authors mentioning these two species as too phylogenetically unstable to be included in a monophyletic grouping of Temnodontosaurus.[8]

Formerly assigned species[edit]

Skulls historically attributed to T. burgundiae (the holotype specimen being at the top), exhibited at the National Museum of Natural History in Paris, France.

In 1892, Albert Gaudry officially described a new species of Ichthyosaurus, I. burgundiae, on the basis of a specimen discovered in the quarries of the town of Sainte-Colombe, in Yonne, France.[66] Even before the taxon was described by Gaudry, the specimen, being one of the largest ichthyosaurs known at the time, led to it being presented at the 1889 Paris Exposition, the same exhibition for which the Eiffel Tower was built. After the end of the exhibition, the specimen was subsequently donated to the National Museum of Natural History in Paris, joining its collection on November 12, 1889, where it is still exhibited to this day.[67] Gaudry already proposed the name of I. burgundiae at the French Academy of Sciences in 1891,[68] but it was not until the following year that he published the first formal description of the taxon.[66] In 1996, McGowan attributed a number of specimens discovered in Germany to this species, but moved it there to the genus Temnodontosaurus.[69] In 1998, Maisch compared these specimens to the holotype of T. trigonodon, and suggested synonymizing T. burgundiae with the latter.[70] Maisch's opinion is followed by McGowan and Motani in 2003, considering T. burgundiae as a junior synonym of T. trigonodon, despite slight osteological differences.[71] The synonymy is however based only on German specimens, a new examination of the holotype specimen discovered in Sainte-Colombe having never been carried out due to its questionable state of conservation.[67]

NHMUK PV R43971, the holotype skull of T. risor[4][5]

In 1974, McGowan described an additional species of Temnodontosaurus, T. risor, based on three skulls discovered at Lyme Regis. The specific name of this taxon comes from the Latin Risor, meaning "mockingbird". In his description, he justifies the distinction of this species via the larger orbits, the smaller maxillae and the curved snout.[4] In 1995, the same author carried out a more in-depth revision of the three specimens attributed to this taxon. He then discovered that the characteristics he had previously judged to be distinctive were in fact stages of growth, the three specimens representing juveniles of T. platyodon.[5]

Description[edit]

Temnodontosaurus, like other ichthyosaurs, had a long, thin snout, large eye sockets, and a tail fluke that was supported by vertebrae in the lower half. Ichthyosaurs were superficially similar to dolphins and had flippers rather than legs, and most (except for early species) had dorsal fins.[72] Although the colour of Temnodontosaurus is unknown, at least some ichthyosaurs may have been uniformly dark-coloured in life, which is evidenced by the discovery of high concentrations of eumelanin pigments in the preserved skin of an early from an early fossil of a representative of the group.[73]

Size[edit]

Diagram of a grayish ichthyosaur with a human
Size of T. platyodon compared to a human

Temnodontosaurus is one of the largest ichthyosaurs identified to date, although the different species who belongs it are not as imposing like the Triassic forms Shonisaurus, Himalayasaurus, Cymbospondylus or Ichthyotitan.[10][74][75] It nevertheless represents the largest known ichthyosaur of the parvipelvian group.[76] Based on different specimens, the species T. platyodon, T. trigonodon and T. crassimanus have a body size which is estimated to be around 9 m (30 ft) long.[4][10][69][74][77][40] The ‘Rutland Sea Dragon’, a possible specimen of T. trigonodon discovered in January 2021 in the Rutland Water, near Oakham, is estimated to be slightly over 10 m (33 ft) long.[32] Skull size varies between these three species. Although incomplete, the holotype specimen of T. crassimanus would have had a skull estimated to be around 1 m (3 ft 3 in) long.[77][40] The largest known skulls of T. trigonodon and T. platyodon are 1.8 m (5 ft 11 in)[69][74] to 1.9 m (6 ft 3 in) long,[78] respectively. No body length estimates for T. zetlandicus and T. nuertingensis have currently been given. However, the measurement of their skull, reaching respectively 1 to 1.3 m (3 ft 3 in to 4 ft 3 in) in length, suggests that they are smaller representatives when compared to the three species previously mentioned.[9][8]

Individual bones suggest that Temnodontosaurus may have grown to a larger size.[76] In his extensive revision published in 1922, von Huene described a series of very imposing vertebrae from from the collections of the Banz Abbey Museum, Germany, the largest of them measuring 22 cm (8.7 in) high.[47] In 1996, McGowan nominally assigned the specimen to Temnodontosaurus, although without specific assignment. Based on SMNS 50000, a nearly complete skeleton of T. trigonodon, the author estimated the size of Banz's specimen at 16 m (52 ft) long,[69] as Huene initially suggested.[47] However, the estimate he proposes turns out to be exaggerated, given that the source of its size is incorrect based on the actual measurements of the specimen SMNS 50000, which is of a shorter length.[76]

Skull[edit]

[79]

Postcranial skeleton[edit]

Classification[edit]

Placement within the Ichthyosauria[edit]

Genus monophyly[edit]

Drawing of an ichthyosaur on white background
Life restoration of T. platyodon

For several decades, Temnodontosaurus was a taxon whose monophyly was rarely questioned.[8] The current diagnostic of the genus was first established in the revision made by McGowan in 1974 based on some cranial and postcranial characteristics.[4] However, as the cranial features of aquatic tetrapods are strongly influenced by convergent evolution, this does not seem ideal for establishing a stable taxonomy.[8] Thus, since the late 1990s, many authors, including McGowan himself, have advocated that Temnodontosaurus needs to be revised.[69][80][40] Additionally, numerous recent phylogenetic analyzes showing that the genus as currently defined is polyphyletic, with some historically assigned species being unrelated each other.[81][8] Thus, pending future studies, Temnodontosaurus is currently seen as a wastebasket taxon including some large, more or less related neoichthyosaurians dating from the Lower Jurassic.[40][8][32] In the last major study investigating the taxonomy of this genus, having been carried out by Laboury et al. (2022), only four species appear to form a monophyletic grouping, namely T. platyodon, T. trigonodon, T. zetlandicus and T. nuertingensis.[8]

Below, a simplified cladogram based on a Bayesian analysis conducted by Laboury et al. (2022):[8]

Parvipelvia

Hudsonelpidia brevirostris

Macgowania janiceps

Ichthyosauridae

Temnodontosaurus azerguensis

Leptonectidae

Temnodontosaurus crassimanus

Suevoleviathan integer

Temnodontosaurus eurycephalus

Temnodontosaurus nuertigensis

Temnodontosaurus zetlandicus

Temnodontosaurus platyodon

Temnodontosaurus trigonodon

Paleobiology[edit]

With their dolphin-like bodies, ichthyosaurs were better adapted to their aquatic environment than any other group of marine reptiles.[80] They were viviparous that gave birth to live young and were likely incapable of leaving the water. As homeotherms ("warm-blooded") with high metabolic rates, ichthyosaurs would have been active swimmers.[82] Jurassic and Cretaceous ichthyosaurs, including Temnodontosaurus, had evolved a thunniform method of swimming rather than the anguilliform (undulating or eel-like) methods of earlier species.[80] Temnodontosaurus, particularly the species T. trigonodon, is quite flexible in morphology for a parvipelvian, using its imposing flippers to maneuver under water.[83]

Diet and feeding[edit]

Swimming and movement style[edit]

Paleopathology[edit]

Paleoecology[edit]

Western Europe[edit]

Chile[edit]

See also[edit]

Notes[edit]

  1. ^ The exact year of the find is uncertain, as sources diverge towards a date variously given between 1809 and 1811.[12]
  2. ^ In the only detailed description of Temnodontosaurus by Lydekker, the taxon is nevertheless always referred to as I. platyodon.[23]
  3. ^ Since a study carried out by McGowan in 1996, this taxon is today known as Leptonectes, Leptopterygius being an already preoccupied junior synonym of a genus of actinopterygians belonging to the family Gobiesocidae.[49]

References[edit]

  1. ^ Maisch & Matzke 2000, p. 71.
  2. ^ a b c McGowan & Motani 2003, p. 85.
  3. ^ a b Oliver Perry Hay (1902). Bibliography and catalogue of the fossil Vertebrata of North America. Bulletin of the United States Geological Survey. Washington: Government Printing Office. p. 462. OCLC 799712116.
  4. ^ a b c d e f g h i j k l Christopher McGowan (1974). "A revision of the Longipinnate Ichthyosaurs of the Lower Jurassic of England, with descriptions of two new species (Reptilia: Ichthyosauria)". Life Sciences Contributions, Royal Ontario Museum. 97: 1–37.
  5. ^ a b c Chris McGowan (1995). "Temnodontosaurus risor is a juvenile of T. platyodon (Reptilia: Ichthyosauria)". Journal of Vertebrate Paleontology. 14 (4): 472–479. doi:10.1080/02724634.1995.10011573. JSTOR 4523589. S2CID 84993853.
  6. ^ McGowan & Motani 2003, p. 85-87.
  7. ^ a b c McGowan & Motani 2003, p. 87.
  8. ^ a b c d e f g h i j k Antoine Laboury; Rebecca F. Bennion; Ben Thuy; Robert Weis; Valentin Fischer (2022). "Anatomy and phylogenetic relationships of Temnodontosaurus zetlandicus (Reptilia: Ichthyosauria)". Zoological Journal of the Linnean Society. 195 (1): 172–194. doi:10.1093/zoolinnean/zlab118. S2CID 261942356.
  9. ^ a b c d e f Michael W. Maisch; Axel Hungerbühler (1997). "Revision of Temnodontosaurus nuertingensis (v. Huene, 1931), a large ichthyosaur from the Lower Pliensbachian (Lower Jurassic) of Nürtingen, South Western Germany". Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie). 248: 1–11.
  10. ^ a b c McGowan 1992, p. 246.
  11. ^ a b c McGowan & Motani 2003, p. 1.
  12. ^ a b Hugh Torrens (1995). "Mary Anning (1799–1847) of Lyme; 'the greatest fossilist the world ever knew'". The British Journal for the History of Science. 25 (3): 257–284. doi:10.1017/S0007087400033161. JSTOR 4027645. S2CID 145269086.
  13. ^ Cadbury 2000, p. 323-324.
  14. ^ Ellis 2003, p. 67.
  15. ^ Everard Home (1814). "Some account of the fossil remains of an animal more nearly allied to fishes than any of the other classes of animals". Philosophical Transactions of the Royal Society of London. 104: 571–577. doi:10.1098/rstl.1814.0029. S2CID 111132066.
  16. ^ Everard Home (1819). "Reasons for giving the name Proteo-Saurus to the fossil skeleton which has been described". Philosophical Transactions of the Royal Society of London. 109: 212–216. doi:10.1098/rstl.1819.0016. S2CID 109406664.
  17. ^ a b Henry T. De la Beche; William D. Conybeare (1821). "Notice of the discovery of a new Fossil Animal, forming a link between the Ichthyosaurus and Crocodile, together with general remarks on the Osteology of the Ichthyosaurus". Transactions of the Geological Society of London. 2. 5: 559–594. doi:10.1144/transgsla.5.559. S2CID 84634727.
  18. ^ Henry T. De la Beche (1822). "Remarks on the Geology of the South Coast of England, from Bridport Harbour, Dorset, to Babbacombe Bay, Devon". Transactions of the Geological Society of London. 2. 1 (1): 40–47. doi:10.1144/transgslb.1.1.40. S2CID 128881944.
  19. ^ William D. Conybeare (1822). "Additional Notices on the Fossil Genera Ichthyosaurus and Plesiosaurus". Transactions of the Geological Society of London. 2. 1 (1): 103–123. doi:10.1144/transgslb.1.1.103. S2CID 129545314.
  20. ^ a b c Liddell & Scott 1980, p. 476.
  21. ^ Owen 1881, p. 116.
  22. ^ Nicholson & Lydekker 1889, p. xi.
  23. ^ Nicholson & Lydekker 1889, p. 1126.
  24. ^ Liddell & Scott 1980, p. 709.
  25. ^ Liddell & Scott 1980, p. 630.
  26. ^ Ryosuke Motani (2000). "Rulers of the Jurassic Seas". Scientific American. 283 (6): 52–59. Bibcode:2000SciAm.283f..52M. doi:10.1038/scientificamerican1200-52. PMID 11103459. S2CID 5246133.
  27. ^ Ivan R. Schwab (2002). "My, what big eyes you have . . ". The British Journal of Ophthalmology. 86 (2): 130. doi:10.1136/bjo.86.2.130. ISSN 0007-1161. PMC 1771016. PMID 11855367.
  28. ^ Christopher McGowan (1972). "The Distinction between Latipinnate and Longipinnate Ichthyosaurs". Life Science Contributions, Royal Ontario Museum. 20: 1–12.
  29. ^ Christopher McGowan (1972). "Evolutionary Trends in Longipinnate Ichthyosaurs, with Particular Reference to the Skull and Fore Fin". Life Science Contributions, Royal Ontario Museum. 83: 1–38.
  30. ^ Arthur Smith Woodward; Charles Davies Sherborn (1890). A catalogue of British fossil Vertebrata. London: Dulau & Co. p. 240.
  31. ^ Owen 1881, p. 115-116.
  32. ^ a b c d Nigel R. Larkin; Dean R. Lomax; Mark Evans; Emma Nicholls; Steven Dey; Ian Boomer; Philip Copestake; Paul Bown; James B. Riding; Darren Withers; Joseph Davis (2023). "Excavating the 'Rutland Sea Dragon': The largest ichthyosaur skeleton ever found in the UK (Whitby Mudstone Formation, Toarcian, Lower Jurassic)". Proceedings of the Geologists' Association. 134 (5–6): 627–640. doi:10.1016/j.pgeola.2023.09.003. S2CID 262205225.
  33. ^ Mark R. Graham; Jonathan D. Radley; Dean R. Lomax (2020). "An overlooked contributor to palaeontology—the preparator Richard Hall (b. 1839) and his work on an armoured dinosaur and a giant sea dragon". Geological Curator. 11 (4): 275–280. doi:10.55468/gc1497. S2CID 251988522.
  34. ^ Carl von Theodori (1843). "Über einen kolossalen Ichthyosaurus trigonodon" [About the colossal Ichthyosaurus trigonodon]. Gelehrte Anzeigen der Königlich Bayerischen Akademie der Wissenschaften (in German). 16 (2): 906–911.
  35. ^ Liddell & Scott 1980, p. 714.
  36. ^ Carl von Theodori (1854). Beschreibung des kolossalen Ichthyosaurus trigonodon in der Lokal-PetrefaktenSammlung zu Banz, nebst synoptischer Darstellung der übrigen Ichthyosaurus-Arten in derselben [Description of the colossal Ichthyosaurus trigonodon in the local petrefact collection at Banz, along with a synoptic representation of the other Ichthyosaurus species in the same] (in German). Munich: Georg Franz. pp. 1–81. OCLC 191977419.
  37. ^ a b Richard Lydekker (1889). Catalogue of the fossil Reptilia and Amphibia in the British Museum (Natural history). Part II. London: Printed by order of the Trustees. p. 105-112. OCLC 491763833.
  38. ^ Richard Lydekker (1890). Catalogue of the fossil Reptilia and Amphibia in the British Museum (Natural history). Part IV. London: Printed by order of the Trustees. p. 271. OCLC 491763858.
  39. ^ a b c Swaby 2020, p. 45.
  40. ^ a b c d e f Emily J. Swaby; Dean R. Lomax (2021). "A revision of Temnodontosaurus crassimanus (Reptilia: Ichthyosauria) from the Lower Jurassic (Toarcian) of Whitby, Yorkshire, UK". Historical Biology. 31 (11): 2715–2731. doi:10.1080/08912963.2020.1826469. S2CID 225116735.
  41. ^ a b Sidney Melmore (1930). "A description of the type-specimen of Ichthyosaurus crassimanus, Blake (Owen MS.)". Annals and Magazine of Natural History. 10. 6 (35): 615–619. doi:10.1080/00222933008673261. S2CID 87629216.
  42. ^ John Phillips; Robert Etheridge. John Murray (ed.). Illustrations of the Geology of Yorkshire: or, a Description of the Strata and Organic Remains. Part I. The Yorkshire Coast. p. 272.
  43. ^ John F. Blake, "Order Ichthyopterygia", in Tate, Ralph; Blake, John F. (eds.), The Yorkshire Lias, London: John Van Voorst, pp. 253–254, OCLC 1159757532
  44. ^ McGowan & Motani 2003, p. 87-88.
  45. ^ Swaby 2020, p. 102.
  46. ^ Harry G. Seeley (1880). "On the skull of an Ichthyosaurus from the Lias of Whitby, apparently indicating a new species (I. zetlandicus, Seeley), preserved in the Woodwardian Museum of the University of Cambridge". Quarterly Journal of the Geological Society. 36: 635–647. doi:10.1144/GSL.JGS.1880.036.01-04.47. S2CID 129081597.
  47. ^ a b c von Huene 1922.
  48. ^ Maisch 2010, p. 165.
  49. ^ Chris McGowan (1996). "The taxonomic status of Leptopterygius Huene, 1922 (Reptilia: Ichthyosauria)". Canadian Journal of Earth Sciences. 33 (3): 439–443. doi:10.1139/e96-033. S2CID 129507468.
  50. ^ a b Friedrich von Huene (1931). "Neue Ichthyosaurier aus Württemberg" [New ichthyosaurs from Württemberg]. Neues Jahrbuch für Mineralogie Geologie und Paläontologie Beilage-Band, Abteilung B (in German). 65: 305–320.
  51. ^ Maisch & Matzke 2000, p. 72.
  52. ^ Friedrich von Huene (1930). "Über zwei Fälle von Nearthrose bei fossilen Ichthyosauriern" [About two cases of neararthrosis in fossil ichthyosaurs]. Anatomischer Anzeiger (in German). 70 (5): 108–109.
  53. ^ a b Judith M. Pardo-Pérez; Benjamin P. Kear; Heinrich Mallison; Marcelo Gómez; Manuel Moroni; Erin E. Maxwell (2018). "Pathological survey on Temnodontosaurus from the Early Jurassic of southern Germany". PLOS ONE. 13 (10): e0204951. Bibcode:2018PLoSO..1304951P. doi:10.1371/journal.pone.0204951. PMC 6200200. PMID 30356279.
  54. ^ Oskar Kuhn (1939). "Ein Ichthyosaurier aus dem oberen Lias gamma von Fallstein im nördlichen Harzvorland" [An ichthyosaur from the Upper Lias gamma of Fallstein in the northern Harz foothills]. Nova Acta Academiae caesareae Leopoldino Carolinae N.F. Halle (in German). 7: 135–138.
  55. ^ Christopher McGowan (1979). "A Revision of the Lower Jurassic Ichthyosaurs of Germany with Descriptions of two new Species". Palaeontographica A. 166 (4–6): 93–135. S2CID 203112602.
  56. ^ McGowan & Motani 2003, p. 90.
  57. ^ Rebecca F. Bennion; Erin E. Maxwell; Olivier Lambert; Valentin Fischer (2023). "Craniodental ecomorphology of the large Jurassic ichthyosaurian Temnodontosaurus". Journal of Anatomy. 244 (1): 22–41. doi:10.1111/joa.13939. hdl:2268/305672. PMC 10734653. PMID 37591692.
  58. ^ McGowan & Motani 2003, p. 88.
  59. ^ Owen 1881, p. 110.
  60. ^ von Huene 1922, p. 8.
  61. ^ McGowan & Motani 2003, p. 91.
  62. ^ McGowan & Motani 2003, p. 88, 95.
  63. ^ Serge Elmi; Louis Rulleau (1991). "Le Toarcien des carrières Lafarge (Bas-Beaujolais, France): Cadre biostratigraphique de référence pour la région lyonnaise". Geobios (in French). 24 (3): 315–331. Bibcode:1991Geobi..24..315E. doi:10.1016/S0016-6995(09)90011-0. S2CID 129637111.
  64. ^ Jeremy E. Martin; Valentin Fischer; Peggy Vincent; Guillaume Suan (2012). "A longirostrine Temnodontosaurus (Ichthyosauria) with comments on Early Jurassic ichthyosaur niche partitioning and disparity". Palaeontology. 55 (5): 995–1005. Bibcode:2012Palgy..55..995M. doi:10.1111/j.1475-4983.2012.01159.x. S2CID 130554998.
  65. ^ Darren Naish (January 30, 2014). "Cant get me enough of that sweet, sweet Temnodontosaurus". Scientific American Blog Network. Archived from the original on June 3, 2024.
  66. ^ a b Albert Gaudry (1892). "L'Ichthyosaurus burgundiae" [The Ichthyosaurus burgundiae]. Bulletin de la Société d'Histoire naturelle d'Autun (in French). 5: 365–372.
  67. ^ a b Arnaud Brignon (2018). "L'industrie du ciment de Vassy et son rôle dans les découvertes des vertébrés toarciens de l'Avallonnais" [The cement industry of Vassy and its role in the discoveries of Toarcian vertebrates of Avallonnais]. Fossiles, Revue française de Paléontologie (in French). 34: 21–50.
  68. ^ Albert Gaudry (1891). "L'ichthyosaure de Sainte-Colombe" [The ichthyosaur of Sainte-Colombe]. Comptes rendus hebdomadaires des Séances de l'Académie des Sciences (in French). 113: 169–172.
  69. ^ a b c d e Chris McGowan (1996). "Giant ichthyosaurs of the Early Jurassic". Canadian Journal of Earth Sciences. 33 (7): 1011–1021. doi:10.1139/e96-077. S2CID 128700808.
  70. ^ Michael W. Maisch (1998). "Kurze Übersicht der Ichthyosaurier des Posidoniaschiefers mit Bemerkungen zur Taxonomie der Stenopterygiidae und Temnodontosauridae" [Brief overview of the ichthyosaurs of the Posidonia Shale with comments on the taxonomy of the Stenopterygiidae and Temnodontosauridae]. Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen (in German). 209 (3): 401–431. doi:10.1127/njgpa/209/1998/401.
  71. ^ McGowan & Motani 2003, p. 85, 87.
  72. ^ Ryan Marek (2015). "Fossil Focus: Ichthyosaurs". Palaeontology Online. 5: 8. Archived from the original on 18 January 2021. Retrieved 13 June 2020.
  73. ^ Johan Lindgren; Peter Sjövall; Ryan M. Carney; Per Uvdal; Johan A. Gren; Gareth Dyke; Bo Pagh Schultz; Matthew D. Shawkey; Kenneth R. Barnes; Michael J. Polcyn (2014). "Skin pigmentation provides evidence of convergent melanism in extinct marine reptiles". Nature. 506 (7489): 484–488. Bibcode:2014Natur.506..484L. doi:10.1038/nature12899. PMID 24402224. S2CID 4468035.
  74. ^ a b c McGowan & Motani 2003, p. 83.
  75. ^ Dean R. Lomax; Paul de la Salle; Marcello Perillo; Justin Reynolds; Ruby Reynolds; James F. Waldron (2024). "The last giants: New evidence for giant Late Triassic (Rhaetian) ichthyosaurs from the UK". PLOS ONE. 19 (4): e0300289. doi:10.1371/journal.pone.0300289. PMC 11023487. PMID 38630678.
  76. ^ a b c Jeremy E. Martin; Peggy Vincent; Guillaume Suan; Tom Sharpe; Peter Hodges; Matt Williams; Cindy Howells; Valentin Fischer (2015). "A mysterious giant ichthyosaur from the lowermost Jurassic of Wales". Acta Palaeontologica Polonica. 60 (4): 837–842. doi:10.4202/app.00062.2014. S2CID 13714078.
  77. ^ a b Swaby 2020, p. 49, 51, 101, 104.
  78. ^ Massare et al. 2024, p. 152-153.
  79. ^ Ryosuke Motani (2005). "Evolution of Fish-Shaped Reptiles (reptilia: Ichthyopterygia) in Their Physical Environments and Constraints" (PDF). Annual Review of Earth and Planetary Sciences. 33: 395–420. Bibcode:2005AREPS..33..395M. doi:10.1146/annurev.earth.33.092203.122707. S2CID 54742104. Archived from the original (PDF) on 2018-12-23.
  80. ^ a b c P. Martin Sander (2000). "Ichthyosauria: their diversity, distribution, and phylogeny". Paläontologische Zeitschrift. 74 (1): 1–35. Bibcode:2000PalZ...74....1S. doi:10.1007/BF02987949. S2CID 85352593.
  81. ^ Cite error: The named reference M17 was invoked but never defined (see the help page).
  82. ^ Yasuhisa Nakajima; Alexandra Houssaye; Hideki Endo (2014). "Osteohistology of the Early Triassic ichthyopterygian reptile Utatsusaurus hataii: Implications for early ichthyosaur biology". Acta Palaeontologica Polonica. 59 (2): 343–352. doi:10.4202/app.2012.0045. S2CID 54932051.
  83. ^ Emily A. Buchholtz (2001). "Swimming styles in Jurassic ichthyosaurs" (PDF). Journal of Vertebrate Paleontology. 21 (1): 61–73. doi:10.1671/0272-4634(2001)021[0061:SSIJI]2.0.CO;2. JSTOR 4524172. S2CID 85925883.

Bibliography[edit]

External links[edit]

Paleontological videos