User:Kompik/Math/Filter
Various definition of filter/ideal
[edit]In mathematical literature, various definitions of a filter/ideal can be found.
Filter defined with the condition : [B, p.57, Definition 1] [HH, p.74, Definition 9.1], [HJ, p.201, Definition 11.1], [J, Definition 7.1], [L, Definition 4.1]
Filter defined without the condition : [JW2, p.1], [C, p.60, Exercise 3]
Ideal defined with the condition : [HH, p.145, Definition 12.2], [HJ, p.202, Definition 11.1], [J, Definition 7.1], [L, Definition 4.1]
Ideal defined without the condition : [C, p.14], [JW2, p.2]
References
[edit][B] N. Bourbaki. Elements of Mathematics. General Topology. Chapters I-IV. Springer-Verlag, Berlin, 1989.
[C] Krzysztof Ciesielski. Set Theory for the Working Mathematician. Cambridge University Press, Cambridge, 1997. London Mathematical Society Student Texts 39.
[HH] A. Hajnal and P. Hamburger. Set theory. Cambridge University Press, Cambridge, 1999.
[HJ] K. Hrbacek and T. Jech. Introduction to set theory. Marcel Dekker, New York, 1999.
[J] T. Jech. Set theory. Springer, Berlin, 2002.
[JW2] Winfried Just and Martin Weese. Discovering modern set theory II: Set-theoretic tools for every mathematician. American Mathematical Society (AMS), Providence, RI, 1997. Graduate Studies in Mathematics 18.
[L] Azriel Levy. Basic set theory. Courier Dover Publications, 2002.