User:Lindsaybeatty

From Wikipedia, the free encyclopedia

Water Reuse[edit]

Water shortage has become an increasingly difficult problem to manage. More than 40% of the world's population live in a region where the demand for water exceeds its supply. The imbalance between supply and demand, along with persisting issues such as climate change and exponential population growth, has made water reuse a necessary method for conserving water.[1] There are a variety of methods used in the treatment of waste water to ensure that it safe to use for irrigation of food crops and/or drinking water.

Desalination is one of them. Seawater desalination requires more energy than the desalination of fresh water. Despite this, many seawater desalination plants have been built in response to water shortages around the world. This makes it necessary to evaluate the impacts of seawater desalination and to find ways to improve desalination technology. Current research involves the use of experiments to determine the most effective and least energy intensive methods of desalination.[2][3]

Sand filtration is another method used to treat water. Recent studies show that sand filtration needs further improvements, but it is approaching optimization with its effectiveness at removing pathogens from water.[4][5]

The removal of pathogens from recycled water is of high priority because wastewater always contains pathogens capable of infecting humans. The levels of pathogenic viruses have to be reduced to a certain level in order for recycled water to not pose a threat to human populations. Further research is necessary to determine more accurate methods of assessing the level of pathogenic viruses in treated wastewater.[6]

  1. ^ Wastewater Reuse and Current Challenges - Springer. doi:10.1007/978-3-319-23892-0.
  2. ^ Elimelech, Menachem; Phillip, William A. (2011-08-05). "The Future of Seawater Desalination: Energy, Technology, and the Environment". Science. 333 (6043): 712–717. doi:10.1126/science.1200488. ISSN 0036-8075. PMID 21817042.
  3. ^ Han, Songlee; Rhee, Young-Woo; Kang, Seong-Pil (2017-02-17). "Investigation of salt removal using cyclopentane hydrate formation and washing treatment for seawater desalination". Desalination. 404: 132–137. doi:10.1016/j.desal.2016.11.016.
  4. ^ Seeger, Eva M.; Braeckevelt, Mareike; Reiche, Nils; Müller, Jochen A.; Kästner, Matthias (2016-10-01). "Removal of pathogen indicators from secondary effluent using slow sand filtration: Optimization approaches". Ecological Engineering. 95: 635–644. doi:10.1016/j.ecoleng.2016.06.068.
  5. ^ Vries, D.; Bertelkamp, C.; Kegel, F. Schoonenberg; Hofs, B.; Dusseldorp, J.; Bruins, J. H.; de Vet, W.; van den Akker, B. "Iron and manganese removal: Recent advances in modelling treatment efficiency by rapid sand filtration". Water Research. doi:10.1016/j.watres.2016.11.032.
  6. ^ Gerba, Charles P.; Betancourt, Walter Q.; Kitajima, Masaaki. "How much reduction of virus is needed for recycled water: A continuous changing need for assessment?". Water Research. doi:10.1016/j.watres.2016.11.020. {{cite journal}}: no-break space character in |title= at position 60 (help)