Jump to content

User:Michael.matthews/sandbox

From Wikipedia, the free encyclopedia

Jennifer Loros[edit]

From Wikipedia, the free encyclopedia

Jennifer Loros, also known as J.J. Loros, is a chronobiologist leading the field in the study of circadian rhythms in Neurospora. Her research focuses on circadian oscillators and their control of gene expression in living cells. Currently, Dr. Loros is a professor of Biochemistry, Cell Biology, and Molecular and Systems Biology at the Giesel School of Medicine.[1] Jennifer Loros is married to Jay Dunlap, a fellow chronobiologist and researcher.

Biography[edit]

Education[edit]

Loros is from Los Altos, California, just north of where she attended Homestead High School. She graduated high school in 1968. Loros then attended both Cabrillo College and Monterey Peninsula College and received two associate degrees in Biology by 1971.

By 1979, Loros received her bachelor's degree in Biology from the University of California. Five years later, in 1984, Loros obtained her PhD in Biology from the same university. For the next four years, Loros completed her PPhD in Genetics from Dartmouth Medical School.[1]

Career (1988-present)[edit]

Loros began her career in biology at Dartmouth Medical School. In 1988, she became the Research Assistant Professor of Biochemistry. By 1994, Loros earned the position of Research Associate Professor of Biochemistry. Loros then accepted the position of Associate Professor of Biochemistry in 1996. She then became Professor of Biochemistry and Professor of Genetics in 2000 and 2001 respectively.[1]

Loros also leads research at the Dunlap and Loros Laboratories, focusing on the circadian clock in Neurospora and its application to the genetic mechanisms of the clock in other organisms.[1][2]

Scientific Career[edit]

Advancements in methodology (1994 - 2008)[edit]

Acknowledging the burden upon researchers to develop novel techniques to further scientific discoveries, Loros first contributed to this need by developing a targeted gene disruption technique for use in Neurospora, which had the effect of amplifying gene markers in such a manner as to make identification of low homologous recombination rates possible, which had previously not been the case when using traditional techniques such as Southern Blot tests. Gene identification in Neurospora was additionally progressed by Loros’ lab when it produced a high density SNP map for Neurospora.[3][4]

Lastly, continuing on with an idea from her post-doc work, Loros resynthesized a gene that codes for firefly luciferase. Since Neurospora has long been a key model organism in the chronobiology field, modifying this tool has been key in further research. Before this, codon bias prevented effective usage of firefly luciferase in Neurospora, problematic as firefly luciferase serves as a reporter to measure transcription in cells. By modifying the firefly luciferase gene, Loros was able to achieve several orders more of light production in Neurospora, revolutionizing transcription measurements in N. cell cultures. Moreover, her modification to this reporter allowed the  FRQ/WCC feedback loop to be monitored in real time without disturbing the overt rhythms of the system. This in turn provided the tool to distinguish between oscillators not directly in the clock and the circadian clock itself.[5]

Research into clock-controlled genes and frq (1989-2014)[edit]

After joining the faculty of the Giesel School of Medicine, Loros continued her post-doc research into the regulation of messenger RNA by circadian clocks. Through sequential rounds of subtractive hybridization , Loros found 2 such genes that are responsible for transcription in morning specific cultures of Neurospora. Loros named these two, unlinked, genes ccg-1 and ccg-2, with the initialisms standing for clock controlled genes, a term which, now prevalent in the circadian clock dialogue, Loros claims to have coined herself.[6]

Research into photobiology, the White-Collar Complex, and Aspergillus Fumigatus (1997-2015)[edit]

During her post-doc work, Loros remarked upon the possibility of frq being light induced, which was later confirmed by a post-doc fellow. Turning her attention to the governing body for this light induction, Loros began experimenting with wc-1 finding that it not only was the mediator for said light induction, but was also necessary for Neurospora’s clock in the absence of light.[7]

Wc-1, in conjunction with its partner protein, wc-2, was found to be the first described positive element regulator in a circadian feedback loop, with the norm being that of negative regulators. This led to the precedent of the PAS-PAS heterodimers in both animals and fungi alike.[7]

The role of metabolism in the circadian system (2016)[edit]

Recently, Loros has worked on examining the reciprocal relationship between metabolism and circadian rhythm. Using Neurospora as her model organism, Loros’ work has revealed how interconnected these two crucial systems are in fungi. These links include both the outputs of each system and how metabolism can directly influence the rhythms set by the clock.[8]

Selected Publications[edit]

https://www.ncbi.nlm.nih.gov/myncbi/browse/collection

References[edit]

  1. "Faculty Members." Department of Molecular and Systems Biology. Dartmouth College, n.d. Web. https://geiselmed.dartmouth.edu/msb/faculty/ Retrieved 12 April 2017.
  2. "Lab Members." Department of Molecular and Systems Biology. Dartmouth College, n.d. Web. https://geiselmed.dartmouth.edu/dunlaploros/members/current.php Retrieved 12 April 2017.
  3. Aronson, B.D., Lindgren, K.M., Dunlap, JC. and Loros, J.J.. 1994 An Efficient Method for Gene Disruption in Neurospora. Molecular and General Genetics 242, 490-494
  4. Lambreghts, Randy, Mi Shi, William J. Belden, David DeCaprio, Danny Park, Matthew R. Henn, James E. Galagan, Meray Basturkmen, Bruce W. Birren, Matthew S. Sachs, Jay C. Dunlap, and Jennifer J. Loros. "A High-Density SNP Map for Neurospora Crassa." Genetics. Genetics, 17 Nov. 2008. Web. Retrieved 13 April 2017.
  5. Gooch, Van D., Arun Mehra, Luis F. Larrondo, Julie Fox, Melissa Touroutoutoudis, and Jennifer J. Loros* And JC Dunlap “Fully Codon-optimized luciferase Uncovers Novel Temperature Characteristics of the Neurospora Clock.”Eukaryotic Cell. American Society for Microbiology, 01 Jan. 2008. Web. Retrieved 13 April 2017.
  6. Loros, JJ, SA Denome, and JC Dunlap. "Molecular Cloning of Genes under Control of the Circadian Clock in Neurospora." Science. American Association for the Advancement of Science, 20 Jan. 1989. Web. http://science.sciencemag.org/content/243/4889/385.long Retrieved 12 April 2017.
  7. Crosthwaite, Susan K., Jay C. Dunlap, and Jennifer J. Loros. "Transcription, Photoresponses, and the Origins of Circadian Rhythmicity." Science. American Association for the Advancement of Science, 02 May 1997. Web. Retrieved 12 April 2017.
  8. Hurley JM, JJ Loros, and JC Dunlap. “The circadian system as an organizer of metabolism.” Pubmed. May, 2016. Web. PMID:26498192 https://www.ncbi.nlm.nih.gov/pubmed/26498192 Retrieved 12 April 2017.

External Links[edit]

Chronobiology Textbook

Dunlap and Loros Laboratories Publications

  1. ^ a b c d "Faculty : Department of Molecular and Systems Biology :: Geisel School of Medicine". geiselmed.dartmouth.edu. Retrieved 2017-04-13.
  2. ^ "Geisel School of Medicine :: Dunlap - Loros Lab :: Lab Members". geiselmed.dartmouth.edu. Retrieved 2017-04-13.
  3. ^ Aronson, B.D., Lindgren, K.M., Dunlap, JC. and Loros, J.J. (1994). "An Efficient Method for Gene Disruption in Neurospora". Molecular and General Genetics. 242: 490–494. doi:10.1007/BF00281802. PMID 8121407. S2CID 33025942.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. ^ Lambreghts, Randy, Mi Shi, William J. Belden, David DeCaprio, Danny Park, Matthew R. Henn, James E. Galagan, Meray Basturkmen, Bruce W. Birren, Matthew S. Sachs, Jay C. Dunlap, and Jennifer J. Loros (17 November 2008). "A High-Density SNP Map for Neurospora Crassa". Genetics.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. ^ Gooch, Van D., Arun Mehra, Luis F. Larrondo, Julie Fox, Melissa Touroutoutoudis, and Jennifer J. Loros* And JC Dunlap (1 January 2008). "Fully Codon-optimized luciferase Uncovers Novel Temperature Characteristics of the Neurospora Clock". Eukaryotic Cell. American Society for Microbiology. 7 (1): 28–37. doi:10.1128/EC.00257-07. PMC 2224151. PMID 17766461.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ Loros, JJ, SA Denome, and JC Dunlap (20 January 1989). "Molecular Cloning of Genes under Control of the Circadian Clock in Neurospora". Science. American Association for the Advancement of Science. 243 (4889): 385–388. doi:10.1126/science.2563175. PMID 2563175.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. ^ a b Crosthwaite, Susan K., Jay C. Dunlap, and Jennifer J. Loros (2 May 1997). "Transcription, Photoresponses, and the Origins of Circadian Rhythmicity". Science. American Association for the Advancement of Science. 276 (5313): 763–769. doi:10.1126/science.276.5313.763. PMID 9115195.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. ^ Hurley JM, JJ Loros, and JC Dunlap (May 2016). "The circadian system as an organizer of metabolism". Fungal Genetics and Biology : Fg & B. 90: 39–43. doi:10.1016/j.fgb.2015.10.002. PMC 4818683. PMID 26498192.{{cite journal}}: CS1 maint: multiple names: authors list (link)