Brief description on Macbeath Regions
In mathematics , a Convex Random Polytope is a structure commonly used in convex analysis and the analysis of Linear programs in d -dimensional Euclidean space
R
d
{\displaystyle \mathbb {R} ^{d}}
.[ 1] [ 2] . Depending on use the construction and definition random polytopes may differ.
Random polytope of a set of random points in accordance with definition 1
There are multiple non equivalent definitions of a Random Polytope. For the following definitions. Let K be a bounded convex set in a Euclidean space :
The convex hull of random points selected with respect to a uniform distribution inside K.[ 2]
The nonempty intersection of half spaces in
R
d
{\displaystyle \mathbb {R} ^{d}}
.[ 1]
The following parameterization has been used:
r
:
(
R
d
×
{
0
,
1
}
)
m
→
Polytopes
∈
R
d
{\displaystyle r:(\mathbb {R} ^{d}\times \{0,1\})^{m}\rightarrow {\text{Polytopes}}\in \mathbb {R} ^{d}}
such that
r
(
(
p
1
,
0
)
,
(
p
2
,
1
)
,
(
p
3
,
1
)
.
.
.
(
p
m
,
i
m
)
)
=
{
x
∈
R
n
:
|
p
j
|
|
p
j
|
|
⋅
x
≤
|
|
p
j
|
|
if
i
j
=
1
,
p
j
|
|
p
j
|
|
⋅
x
≥
|
|
p
j
|
|
if
i
j
=
0
}
{\displaystyle r((p_{1},0),(p_{2},1),(p_{3},1)...(p_{m},i_{m}))=\{x\in \mathbb {R} ^{n}:|{\frac {p_{j}}{||p_{j}||}}\cdot x\leq ||p_{j}||{\text{ if }}i_{j}=1,{\frac {p_{j}}{||p_{j}||}}\cdot x\geq ||p_{j}||{\text{ if }}i_{j}=0\}}
(Note: these polytopes can be empty).[ 1]
Properties Definition 1 [ edit ]
Let
K
{\displaystyle \mathrm {K} }
be the set of convex bodies in
R
d
{\displaystyle \mathbb {R} ^{d}}
. Assume
K
∈
K
{\displaystyle K\in \mathrm {K} }
and consider a set of uniformly distributed points
x
1
,
.
.
.
,
x
n
{\displaystyle x_{1},...,x_{n}}
in
K
{\displaystyle K}
. The convex hull of these points,
K
n
{\displaystyle K_{n}}
, is called a random polytope inscribed in
K
{\displaystyle K}
.
K
n
=
[
x
1
,
.
.
.
,
x
n
]
{\displaystyle K_{n}=[x_{1},...,x_{n}]}
where the set
[
S
]
{\displaystyle [S]}
stands for the convex hull of the set.[ 2] We define
E
(
k
,
n
)
{\displaystyle E(k,n)}
to be the expected volume of
K
−
K
n
{\displaystyle K-K_{n}}
. For a large enough
n
{\displaystyle n}
and given
K
∈
R
n
{\displaystyle K\in \mathbb {R} ^{n}}
.
vol
K
(
1
n
)
≪
E
(
K
,
n
)
≪
{\displaystyle K({\frac {1}{n}})\ll E(K,n)\ll }
vol
K
(
1
n
)
{\displaystyle K({\frac {1}{n}})}
[ 2]
Note: One can determine the volume of the wet part to obtain the order of the magnitude of
E
(
K
,
n
)
{\displaystyle E(K,n)}
, instead of determining
E
(
K
,
n
)
{\displaystyle E(K,n)}
. [ 3]
For the unit ball
B
d
∈
R
d
{\displaystyle B^{d}\in \mathbb {R} ^{d}}
, the wet part
B
d
(
v
≤
t
)
{\displaystyle B^{d}(v\leq t)}
is the annulus
B
d
(
1
−
h
)
B
d
{\displaystyle {\frac {B^{d}}{(1-h)B^{d}}}}
where h is of order
t
2
d
+
1
{\displaystyle t^{\frac {2}{d+1}}}
:
E
(
B
d
,
n
)
≈
{\displaystyle E(B^{d},n)\approx }
vol
B
d
(
1
n
)
≈
n
−
2
d
+
1
{\displaystyle B^{d}({\frac {1}{n}})\approx n^{\frac {-2}{d+1}}}
[ 2]
Given we have
V
=
V
(
x
1
,
.
.
.
,
x
d
)
{\displaystyle V=V(x_{1},...,x_{d})}
is the volume of a smaller cap cut off from
K
{\displaystyle K}
by aff
(
x
1
,
.
.
.
,
x
d
)
{\displaystyle (x_{1},...,x_{d})}
, and
F
=
[
x
1
,
.
.
.
,
x
d
]
{\displaystyle F=[x_{1},...,x_{d}]}
is a facet if and only if
x
d
+
1
,
.
.
.
,
x
n
{\displaystyle x_{d+1},...,x_{n}}
are all on one side of aff
{
x
1
,
.
.
.
,
x
d
}
{\displaystyle \{x_{1},...,x_{d}\}}
.
E
ϕ
(
K
n
)
=
(
n
d
)
∫
K
.
.
.
∫
K
[
(
1
−
V
)
n
−
d
+
V
n
−
d
]
ϕ
(
F
)
d
x
1
.
.
.
d
x
d
{\displaystyle E_{\phi }(K_{n})={{n} \choose {d}}\int _{K}...\int _{K}[(1-V)^{n-d}+V^{n-d}]\phi (F)dx_{1}...dx_{d}}
. [ 2]
Note: If
ϕ
=
f
d
−
1
{\displaystyle \phi =f_{d-1}}
(a function that returns the amount of d-1 dimensional faces), then
ϕ
(
F
)
=
1
{\displaystyle \phi (F)=1}
and formula can be evaluated for smooth convex sets and for polygons in the plane.
Properties Definition 2 [ edit ]
Assume we are given a multivariate probability distribution on
(
R
d
×
{
0
,
1
}
)
m
=
(
p
1
×
i
1
,
…
,
p
m
×
i
m
)
m
{\displaystyle (\mathbb {R} ^{d}\times \{0,1\})^{m}=(p_{1}\times i_{1},\dots ,p_{m}\times i_{m})^{m}}
that is
Absolutely continuous on
(
p
1
,
…
,
p
d
)
{\displaystyle (p_{1},\dots ,p_{d})}
with respect to Lebesgue measure.
Generates either 0 or 1 for the
i
{\displaystyle i}
s with probability of
1
2
{\displaystyle {\frac {1}{2}}}
each.
Assigns a measure of 0 to the set of elements in
(
R
d
×
{
0
,
1
}
)
m
{\displaystyle (\mathbb {R} ^{d}\times \{0,1\})^{m}}
that correspond to empty polytopes.
Given this distribution, and our assumptions, the following properties hold:
A formula is derived for the expected number of
k
{\displaystyle k}
dimensional faces on a polytope in
R
d
{\displaystyle \mathbb {R} ^{d}}
with
m
{\displaystyle m}
constraints:
E
k
(
m
)
=
2
d
−
k
∑
i
=
d
−
k
d
(
i
d
−
k
)
(
m
i
)
/
∑
i
=
0
d
(
m
i
)
{\displaystyle E_{k}(m)=2^{d-k}\sum _{i=d-k}^{d}{{i} \choose {d-k}}{{m} \choose {i}}/\sum _{i=0}^{d}{{m} \choose {i}}}
. (Note:
lim
m
→
∞
E
k
(
m
)
=
(
d
d
−
k
)
2
d
−
k
{\displaystyle \lim _{m\to \infty }E_{k}(m)={{d} \choose {d-k}}2^{d-k}}
where
m
>
d
{\displaystyle m>d}
). The upper bound, or worst case, for the number of vertices with
m
{\displaystyle m}
constraints is much larger:
V
m
a
x
=
(
m
−
[
1
2
(
d
+
1
)
]
m
−
d
)
+
(
m
−
[
1
2
(
d
+
2
)
]
m
−
d
)
{\displaystyle V_{max}={m-[{\frac {1}{2}}(d+1)] \choose m-d}+{m-[{\frac {1}{2}}(d+2)] \choose m-d}}
.[ 1]
The probability that a new constraint is redundant is:
π
m
=
1
−
2
∑
i
=
0
d
−
1
(
m
−
1
i
)
∑
i
=
0
d
(
m
i
)
{\displaystyle \pi _{m}=1-{\frac {2\sum _{i=0}^{d-1}{{m-1} \choose i}}{\sum _{i=0}^{d}{m \choose i}}}}
. (Note:
lim
m
→
∞
π
m
=
1
{\displaystyle \lim _{m\to \infty }{\pi _{m}}=1}
, and as we add more constraints, the probability a new constraint is redundant approaches 100%).[ 1]
The expected number of non-redundant constraints is:
C
d
(
m
)
=
2
m
∑
i
=
0
d
−
1
(
m
−
1
i
)
∑
i
=
0
d
(
m
i
)
{\displaystyle C_{d}(m)={\frac {2m\sum _{i=0}^{d-1}{{m-1} \choose i}}{\sum _{i=0}^{d}{{m} \choose i}}}}
. (Note:
lim
m
→
∞
C
d
(
m
)
=
2
d
{\displaystyle \lim _{m\to \infty }C_{d}(m)=2d}
).[ 1]
Minimal caps
Macbeath regions
Approximations (approximations of convex bodies see properties of definition 1)
Economic cap covering theorem (see relation from properties of definition 1 to floating bodes)
^ a b c d e f May, Jerrold H.; Smith, Robert L. (December 1982). "Random polytopes: Their definition, generation and aggregate properties". Mathematical Programming . 24 (1): 39–54. doi :10.1007/bf0158509 .
^ a b c d e f Baddeley, Adrian; Bárány, Imre; Schneider, Rolf; Weil, Wolfgang, eds. (2007), "Random Polytopes, Convex Bodies, and Approximation" , Stochastic Geometry: Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 13–18, 2004 , Berlin, Heidelberg: Springer, pp. 77–118, doi :10.1007/978-3-540-38175-4_2.pdf , ISBN 978-3-540-38175-4 , retrieved 2022-04-01
^ Bárány, I.; Larman, D. G. (December 1988). "Convex bodies, economic cap coverings, random polytopes". Mathematika . 35 (2): 274–291. doi :10.1112/S0025579300015266 .
Category:Metric geometry
Category:Convex analysis
Category:Computational geometry