Jump to content

User:Tomruen/List of small groups

From Wikipedia, the free encyclopedia

Notes

[edit]
  • "≈" should be or ≅ for isomorphic.
  • × : Direct product
  • ^ : wreath product, or ≀
    • = 2Xn
  • Cn=Zn ≈ [n]+ :Cyclic group, , order n, also as
    • Znm ≈ Zn × Zm, if gcd(n,m)=1.
  • Dn=Dn ≈ [n] : Dihedral group, , order n, also as Dihn.
    • D2n ≈ Z2 × Dn, n odd.
    • D2 ≈ Z2 × D1 ≈ Z2 × Z2.
  • Sn=Sn ≈ [3n-2] : Symmetric group, , order n!
    • S2=S2 ≈ D1 ≈ [1], order 2
    • S3=S3 ≈ D3 ≈ [3], order 6
    • S4=S4 ≈ [3,3] ≈ [4,3]+, order 24
    • S5=S5 ≈ [3,3,3], order 120
  • An=An ≈ [3n-2]+: Alternating group, , order n!/2
    • A2=A2 ≈ Z1 ≈ [ ]+, order 1
    • A3=A3 ≈ Z3 ≈ [3]+, order 3
    • A4=A4 ≈ [3,3]+, order 12
    • A5=A5 ≈ [3,3,3]+ ≈ [5,3]+, order 60
  • Q8=Q= ≈ <2,2,2> : Quaternion group, order 8, smallest dicyclic group
  • [[p,q,p]+] = ( 2q, 4 | 2, p)

See also

[edit]

2D

[edit]
Isomorphic type Q-classes Symmetry groups Cyclic graph
Order.index
(n)
Standard notation [n]+
Zn
[n/2]
Dn
1.1 Z1 1/1 [1]+
2.1 Z2 1/2,2/1 [2]+ [1]
3.1 Z3 4/1 [3]+
4.1 D4 2/2 [2]
4.2 Z4 3/1 [4]+
5 Z5 [5]+
6.1 Z6 4/3 [6]+
6.2 D6 4/2 [3]
7 Z7 [7]+
8.3 Z8 [8]+
8.4 D8 3/2 [4]
9 Z9 [9]+
10.1 Z10 [10]+
10.2 D10 [5]
11 Z11 [11]+
12.2 Z12 [12]+
12.3 D12 4/4 [6]
13 Z13 [13]+
14 Z14 [14]+
14 D14 [7]
15 Z15 [15]+
16 Z16 [16]+
16.12 D16 [8]
17 Z17 [17]+
18 Z18 [18]+
18 D18 [9]
19 Z19 [19]+
20 Z20 [20]+
20.3 D20 [10]
21 Z21 [21]+
22 Z22 [22]+
22 D22 [11]
23 Z23 [23]+
24 Z24 [24]+
24.12 D24 [12]

3D

[edit]
Isomorphic type Q-classes Symmetry groups Cyclic graph
Order.index
(n)
Standard notation [n]+ [n/2] [n/4,2] [n,2]+ Even:
[n/2,2+]
[n/2+,2] Even:
[n+,2+]
[3,3], [4,3], [5,3]
Zn Z(n/2)v D(n/4)h Dnv Z(n/2)h D(n/2)d Sn T, Td, O, Th, Oh, I, Ih
1.1 Z1 1/1 [1]+
2.1 D2
≈Z2
1/2,2/1,2/2 [2]+ [1] [2+,2+]
3.1 Z3 5/1 [3]+
4.1 D4
≈Z2×Z2
2/3,3/1,3/2 [2] [2] [2,2]+ [2+,2] [2,2+]
4.2 Z4 4/1,4/2 [1,4]+ [4+,2+]
5 Z5 [5]+
6.1 Z6
≈Z3×Z2
5/2,6/1,6/2 [6]+ [3+,3] [2+,6+]
6.2 D6 5/3,5/4 [3] [3,2]+
7 Z7 [7]+
8.1 D4×Z2
≈Z2×Z2×Z2
3/3 [2,2]
8.2 Z4×Z2 4/3 [4+,2]
8.3 Z8 [8]+
8.4 D8 4/4,4/5,4/6 [4] [4,2]+ [2+,4]
9 Z9 [9]+
10.1 Z10
≈Z5×Z2
[10]+ [5+,2] [10+,2+]
10.2 D10 [5] [5,2]+
11 Z11 [11]+
12.1 Z6×Z2 6/3 [6+,2]
12.2 Z12 [12]+ [12+,22+]
12.3 D12 5/5,6/4,6/5,6/6 [6] [6,2]+ [6,2+]
12.5 A4 7/1 [3,3]+
13 Z13 [13]+
14 Z14
≈Z7×Z2
[14]+ [7+,2] [14+,2+]
14 D14 [7] [7,2]+
15 Z15 [15]+
16 Z8×Z2 [8+,2]
16 Z16 [16]+ [16+,2+]
16.12 D16 [8] [8,2]+ [8,2+]
16.6 D8×Z2 4/7 [4,2]
17 Z17 [17]+
18 Z18
≈Z9×Z2
[18]+ [9+,2] [18+,2+]
18 D18 [9] [9,2]+
19 Z19 [19]+
20 Z20 [20]+ [20+,2+]
20.3 D20
≈D10×Z2
[10] [5,2] [10,2]+ [10,2+]
20 Z10×Z2 [10+,2]
21 Z21 [21]+
22 Z22
≈Z11×Z2
[22]+ [11+,2] [22+,2+]
22 D22 [11] [11,2]+
23 Z23 [23]+
24 Z12×Z2 [12+,2]
24 Z24 [24]+ [24+,2+]
24.6 D12×Z2 6/7 [6,2]
24.10 A4×Z2 7/2 [4,3+]
24.12 D24 [12] [12,2]+ [12,2+]
24.15 S4 7/3,7/4 [3,3], [4,3]+
48.36 S4×Z2 7/5 [4,3]
60 A5 [5,3]+
120 A5×Z2 [5,3]

4D

[edit]
Isomorphic type Q-classes Symmetry groups Cyclic graph Cayley graph
Order.index
(n)
Standard notation
2.1 Z2 01/02,02/01,02/02,03/01 [2]+, [2,2+,2+]
[],[2+],[2+,2+], [2+,2+,2+]
3.1 Z3 [3]+
4.1 D4
≈Z2×Z2
[2], [2,2+], [2,2]+
[2+,2,2+]
4.2 Z4 [4]+, [4+,2+], [4+,2+,2+]
5.1 Z5 [5]+, [5+,2+], [5+,2+,2+]
6.1 Z6
≈Z3×Z2
[6]+, [6+,2+], [6+,2+,2+], [3+,2,2+]
6.2 D6
≈S3
[3], [3,2+], [3,2+,2+]
7 Z7 [7]+
8.1 D4×Z2
≈Z2×Z2×Z2
[2,2], [2,2,2+], [2,(2,2)+]
[[2+,2,2+]]
8.2 Z4×Z2 [4+,2], [4+,2,2+], [4+,(2,2)+]
8.3 Z8 26/01 [8]+, [8+,2+], [8+,2+,2+]
8.4 D8
≈Z2^S2
[4], [4,2+], [4,2+,2+], [(4,2)+,2+]
[4,2]+, [(4,2)+,2+]
8.5 Q8≈<2,2,2> 32/01 ?
9.1 Z3×Z3 32/01 [3+,2,3+]
9 Z9 [9]+
10.1 Z10
≈Z5×Z2
27/02 [10]+, [10+,2+], [10+,2+,2+], [5+,2,2+]
10.2 D10 27/03 [5], [5,2+], [5,2+,2+]
11 Z11 [11]+
12.1 Z6×Z2 [6+,2], [6+,2,2+], [6+,(2,2)+]
12.2 Z12
≈Z4×Z3
[12]+, [12+,2+], [12+,2+,2+], [4+,2,3+]
12.3 D6×Z2 [3,2], [3,2,2+], [3,(2,2)+]
12.4 Q12≈<2,2,3> ?
12.5 A4 [3,3]+
13 Z13 [13]+
14 Z14
≈Z7×Z2
[14]+, [14+,2+], [14+,2+,2+]
[7+,2], [7+,2,2+]
14 D14 [7], [7,2+], [7,2+,2+], [7,2]+
15 Z15
≈Z5×Z3
[15]+, [5+,2,3+]
16.1 Z2×Z2×Z2×Z2
≈D4×Z2×Z2
≈D4×D4
[2,2,2]
16.2 Z4×Z2×Z2
≈Z4×D4
[4+,2], [4+,2,2+]
[4+,2,2]
16.3 Z4×Z4 [4+,2,4+]
16.6 D8×Z2 [4,2], [4,2,2+], [4,(2,2)+]
16.8 <2,2,2>2 ?
16 <4,2,2> ?
16.9 (4,4|2,2) [[2,2,2]+]
16.10 <2,2|4;2> ?
16.11 <2,2|2> ?
16.12 D16 26/02 [8], [8,2+], [8,2+,2+]
16.13 <-2,4|2> 32/03 ?
16 Z8×Z2 [8+,2], [8+,2,2+]
16 Z16 [16]+, [2+,16+]
16 Q16=<2,2,4>
17 Z17 [17]+
18.1 Z6×Z3 23/01 [6+,2,3+]
18.3 D6×Z3 22/03,22/04,29/01 [3,2,3+]
18.4 D(Z3×Z3)
≈((3,3,3;2)) ?
18 Z18
≈Z9×Z2
[18]+, [2+,18+]
[9+,2], [9+,2,2+]
18 D18 [9], [9,2+], [9,2+,2+], [9,2]+
19 Z19 [19]+
20.3 D10×Z2
≈D20
27/04 [5,2], [5,2,2+], [5,(2,2)+]
[10], [10,2]+, [5,2+], [5,2,2+]
20.5 31/01 ?
20 Z20
≈Z5×Z4
[20]+, [20+,2+], [20+,2+,2+]
[5+,2,4+]
20 Z10×Z2 [10+,2], [10+,2,2+]
20 Q20=<2,2,5>
21 Z21
≈Z7×Z3
[21]+
[7+,2,3+]
22 Z22
≈Z11×Z2
[22]+, [2+,22+]
[11+,2,2+]
22 D22 [11], [11,2+], [11,2+,2+], [11,2]+
23 Z23 [23]+
24.1 Z6×Z2×Z2
≈Z6×D4
15/08 [6+,2,2+]
[6+,2,4]
24.2 Z12×Z2 20/05 [12+,2], [12+,2,2+]
24.4 D8×Z3 20/06,20/08,20/10,30/03 [4,2,3+]
24.5 Q8×Z3 33/01 ?
24.6 D12×Z2
≈D6xD4
[6,2], [6,2,2+], [6,(2,2)+]
[3,2,2]
24.7 D6×Z4 [3,2,4+]
24.8 Q12×Z2 20/14 ?
24.9 <-2,2,3> 33/02 ?
24.10 A4×Z2 24/02,25/02,25/01 [3+,4], [3+,4,2+]
[(3,3)+,2], [3,3,2]+
24.11 (4,6|2,2)
≈[3,2,2]
TE1: 20/12
TE2: 20/13
TE3: 30/04
[6,(2,2)+]
24.12 D24 20/07,20/11,28/02 [12], [12,2+], [12,2+,2+]
24.14 <2,3,3> TE1: 32/05
TE2: 33/03
?
24.15 S4 TE1: 24/03
TE2: 24/04, 25/03, 25/04
[3,3]
[3,4]+, [(3,3)+,2+]
24 Q24=<2,2,6>
24 Z12×Z2 [12+,2], [12+,2,2+]
24 Z24
≈Z8×Z3
[24]+, [24+,2+], [24+,2+,2+]
[8+,2,3+]
26 D26 [13], [13,2+], [13,2+,2+]
27 (3,3|3,3)
28 D28
≈D14×Z2
28 <2,2,7>
30 D30
30 D10×C3 [5,2,3+]
30 D6×C5 [3,2,5+]
32.8 D8×Z2×Z2
≈D8×D4
13/10 [4,2,2]
32.14 D8×Z4 19/03 [4,2,4+]
32.31 Z4^S2 = 4S2 32/08 ?
32.33 (Z2×Z2)^S2
≈D4^S2
18/05 ?
32.34 D(Z4×Z4) 19/05
32.36 19/04 ?
32.42 32/10 ?
32.44 32/44 ?
32.46 32/09 ?
32.47 32/07 ?
36.1 Z6×Z6 32/02 [6+,2,6+]
36.5 D6×Z6 22/06, 23/03,23/04, 23/06, 29/02 [3,2,6+]
36.6 Q12×Z3 30/05 ?
36.9 D(C3×Z3)×Z2 ?
36.13 D6×D6 [3,2,3]
36.14 (3,4,4;3) 29/04 [[3,2,3]+]
40.10 31/02 ?
48.6 D8×Z6 20/18 [4,2,6+]
48.15 D12×Z2×Z2
≈D12×D4
15/12 [6,2,2]
48.16 D12×Z4 20/15 [6,2,4+]
48.22 A4×Z2×Z2
≈A4×D4
25/05 [3+,4,2], [(3,3)+,2]
48.24 (4,6|2,2)×Z2 20/21 [[2,3,2]]
48.25 D24×Z2 20/19 [12,2], [12,2,2+], [12,(2,2)+]
48.35 33/05 ?
48.36 S4×Z2
≈Z2^S3 = 2S3
[4,3], [4,3,2+]
48.38 D8×D6 [4,2,3]
48.47 33/04 ?
48.49 ?
48 <2,3,4>
60.13 A5 [5,3]+, [(5,3)+,2+]
[3,3,3]+
64.154 D8×D8 [4,2,4]
64.250 32/13 ?
64.252 32/15 ?
64.259 32/14 ?
64.261 32/12 ?
72.11 D12×Z6 23/07 [6,2,6+]
72.17 D(Z6×Z6) 23/08 ?
72.25 (4,6|2,2)×Z3 30/07 ?
72.28 <2,3,3>×Z3 33/07 ?
72.31 D12×D6 [6,2,3]
72.33 30/09 ?
72.34 (3,4,4;3)×Z2 29/06 ?
72.43 30/08 ?
72.47 D6^S2 29/07,29/08 ?
96.1 32/16 [31,1,1]+
96.2 33/08 ?
96.3 33/09 ?
96.4 33/10 ?
96.5 S4×Z2×Z2
≈S4×D4
25/11 [4,3,2]
96.6 D12×D8 20/22 [6,2,4]
120.1 S5
≈(4,6|2,3)
TE1: 31/04
TE2: 31/05
[3,3,3], [[3,3,3]+]
120.2 A5×Z2 [5,3], [5,3,2]+, [(5,3)+,2]
[[3,3,3]]+
120 <2,3,5>
128.1 32/17 ?
144.1 33/11 ?
144.2 30/10 ?
144.3 30/11 ?
144.4 (D6^S2)×Z2 29/09 ?
144.5 30/12 ?
144.6 D12×D12 23/11 [6,2,6]
192.1 32/18 ?
192.2 32/19 ?
192.3 32/20 ?
192.4 33/12 ?
240.1 S5×Z2 31/07 [[3,3,3]]
240 A5×Z2×Z2
≈A5×D4
[5,3,2]
288.1 33/13 [3+,4,3+]
288.2 D12^S2 30/13 ?
384.1 Z2^S4
2S4
32/21 [4,3,3]
576.1 33/14 [3+,4,3]
576.2 3.2A4 33/15 [3,4,3]+
576 33/15 [[3+,4,3+]]
1152.1 3.2S4 33/16 [3,4,3]
1152 [[3,4,3]+]
1152 [[3,4,3]]+
2304 [[3,4,3]]
7200 2.(A5×A5) [5,3,3]+
14400 2.(A5×A5).2 [5,3,3]