2019 in amphibian paleontology

From Wikipedia, the free encyclopedia
List of years in amphibian paleontology
In paleontology
2016
2017
2018
2019
2020
2021
2022
In science
2016
2017
2018
2019
2020
2021
2022
+...

New taxa[edit]

Name Novelty Status Authors Age Type locality Country Notes Images

Anthracobamus[1]

Gen. et comb. nov

Valid

Werneburg

Late Carboniferous

 Czech Republic
 France

An amphibamiform temnospondyl, possibly a member of the family Micropholidae. The type species is "Platyrhinops" fritschi Werneburg (2012); genus also includes "Protriton" fayoli Thevenin (1906).

Branchierpeton saberi[2]

Sp. nov

Valid

Werneburg et al.

Carboniferous (Kasimovian)

Souss Basin

 Morocco

A micromelerpetid temnospondyl.

Branchiosaurus commentryensis[1]

Sp. nov

Valid

Werneburg

Carboniferous (Gzhelian)

 France

Cratopipa[3]

Gen. et sp. nov

Valid

Carvalho et al.

Early Cretaceous (Aptian)

Crato Formation

 Brazil

A frog belonging to the group Pipimorpha. Genus includes new species C. novaolindensis.

Diabloroter[4]

Gen. et sp. nov

Valid

Mann & Maddin

Carboniferous (Pennsylvanian)

Mazon Creek fossil beds

 United States

A short-bodied recumbirostran. Genus includes new species D. bolti.

Hassiacoscutum[5]

Gen. et sp. nov

Valid

Witzmann et al.

Late Permian

 Germany

A chroniosuchian belonging to the family Bystrowianidae. Genus includes new species H. munki.

Infernovenator[6]

Gen. et sp. nov

Valid

Mann, Pardo & Maddin

Carboniferous (Pennsylvanian)

Mazon Creek fossil beds

 United States

A member of Lysorophia. Genus includes new species I. steenae.

Linglongtriton[7]

Gen. et sp. nov

Valid

Jia & Gao

Late Jurassic (Oxfordian)

Tiaojishan Formation

 China

A stem-hynobiid salamander. Genus includes new species L. daxishanensis.

Mattauschia[8]

Gen. et comb. nov

Valid

Milner

Late Carboniferous (Moscovian)

Kladno Formation

 Czech Republic

A trematopid temnospondyl. Genus includes "Limnerpeton" laticeps Fritsch (1881).

Montceaubatrachus[1]

Gen. et sp. nov

Valid

Werneburg

Carboniferous/Permian (Gzhelian/Asselian)

 France

An amphibamiform temnospondyl. The type species is M. platyrynchus.

Nevobatrachus[9]

Nom. nov

Valid

Mahony

Early Cretaceous

 Israel

A frog belonging to the group Pipimorpha; a replacement name for Cordicephalus Nevo (1968).

Nyranerpeton montceauense[1]

Sp. nov

Valid

Werneburg

Carboniferous/Permian (Gzhelian/Asselian)

 France

A micromelerpetid temnospondyl.

Panthasaurus[10]

Gen. et comb. nov

Valid

Chakravorti & Sengupta

Late Triassic (late Carnian to early Norian)

Maleri Formation
Tiki Formation

 India

A metoposaurid temnospondyl. Genus includes "Metoposaurus" maleriensis Roy Chowdhury (1965).

Parmastega[11]

Gen. et sp. nov

Valid

Beznosov et al.

Devonian (Famennian)

Sosnogorsk Formation

 Russia
( Komi Republic)

A basal tetrapod. Genus includes new species P. aelidae.

Patagopipa[12]

Gen. et sp. nov

Valid

Rolando, Agnolin & Corsolini

Eocene

Huitrera Formation

 Argentina

A frog belonging to the group Pipimorpha. Genus includes new species P. corsolini.

Rhinella loba[13]

Sp. nov

Valid

Pérez-Ben, Gómez & Báez

Chapadmalalan

Chapadmalal Formation

 Argentina

A true toad, a species of Rhinella.

Trypanognathus[14]

Gen. et sp. nov

Valid

Schoch & Voigt

Carboniferous-Permian boundary

 Germany

A dvinosaurian temnospondyl. Genus includes new species T. remigiusbergensis.

Research[edit]

  • A study on changes of the skeletal anatomy of the pelvic and pectoral appendages during the transition from fins to limbs in vertebrate evolution, as indicated by data from fossil lobe-finned fishes and early tetrapods, is published by Esteve-Altava et al. (2019).[15]
  • An outline of a new interpretative scenario for the origin of tetrapods, based on data from tetrapod body fossils and from putative tetrapod trace fossils from Poland and Ireland that predate earliest tetrapod body fossils, is presented by Ahlberg (2019).[16]
  • A historical review of the fossil record of Devonian tetrapods and basal tetrapodomorphs from East Gondwana (Australasia, Antarctica) is published by Long, Clement & Choo (2019).[17]
  • A study on the macroevolutionary dynamics of shape changes in the humeri of all major grades and clades of early tetrapods and their fish-like forerunners is published by Ruta et al. (2019).[18]
  • A study on the phylogenetic relationships of early tetrapods is published by Marjanović & Laurin (2019).[19]
  • A study on the anatomy of the palate and neurocranium of Whatcheeria deltae is published by Bolt & Lombard (2019).[20]
  • A study on the morphology of the postcranial skeleton of Crassigyrinus scoticus is published by Herbst & Hutchinson (2019).[21]
  • Herbst et al. (2019) report new evidence of bone healing in the hindlimbs of Crassigyrinus scoticus and Eoherpeton watsoni, and evaluate the implications of these findings for the knowledge of the evolution of bone healing mechanisms in early tetrapods.[22]
  • Description of a new specimen of Oestocephalus from Five Points, Ohio, preserving much of the posterior braincase, is published by Pardo, Holmes & Anderson (2019), who also evaluate the implications of this specimen for inferring the phylogenetic placement of aïstopods.[23]
  • A study on the holotype specimen of Acherontiscus caledoniae is published by Clack et al. (2019), who consider this taxon to be the earliest known heterodont and durophagous tetrapod.[24]
  • A limb bone and a possible ilium on an early tetrapod are described from the Carboniferous (Bashkirian) Clare Shale Formation (Ireland) by Doyle & Ó Gogáin (2019), representing the oldest stratigraphically weill-constrained tetrapod skeletal fossil material from Ireland reported so far.[25]
  • Description of fossils of embolomeres collected in 1915 by Walter A. Bell from the Mississippian-aged Point Edward Formation (Nova Scotia, Canada) is published online by Adams, Mann & Maddin (2019).[26]
  • A study on patterns of shape and size changes of the orbits and vacuities in the skulls of temnospondyls and other early tetrapods is published by Witzmann & Ruta (2019).[27]
  • A study evaluating whether the intraspecific integration of morphological traits significantly affected the evolution of the skull roof of temnospondyls over geological time is published by Pérez-Ben & Gómez (2019).[28]
  • A study on patterns of ontogenetic allometry in the skull roof of temponspondyls, and on their relationship with adult morphological evolution, is published online by Pérez-Ben, Báez & Schoch (2019).[29]
  • Tracks produced by an edopoid temnospondyl are described from the Carboniferous (Viséan) Alston Formation (North Yorkshire, United Kingdom) by Bird et al. (2019), representing the stratigraphically oldest known tetrapod trackway from the United Kingdom reported so far and the oldest known record of Edopoidea.[30]
  • A study on the structure of stapes of Edops craigi is published by Schoch (2019).[31]
  • A fragment of a skull roof of a possible basal dvinosaur is described from the Carboniferous (Viséan) Ortelsdorf Formation (Germany) by Werneburg, Witzmann & Schneider (2019), representing the oldest known tetrapod record in Germany and, together with Balanerpeton, the oldest temnospondyl reported so far.[32]
  • A study on the evolution of the braincase anatomy of dissorophoid temnospondyls, and on its implications for the knowledge of the evolution of the lissamphibian braincase, is published by Atkins, Reisz & Maddin (2019).[33]
  • Description of new fossil material of dissorophoid temnospondyls from the early Permian locality of Richards Spur (Oklahoma, United States) is published by Gee, Bevitt & Reisz (2019).[34]
  • Complete skull and mandibles of a small-bodied trematopid of uncertain phylogenetic placement, most closely resembling members of the genus Acheloma, is described from the Early Permian karst deposits near Richards Spur (Oklahoma, United States) by Gee, Bevitt & Reisz (2019), who also evaluate the implications of this specimen for the knowledge of trematopid ontogeny and taxonomy.[35]
  • A study on the anatomy and phylogenetic relationships of Nanobamus macrorhinus is published online by Gee & Reisz (2019).[36]
  • A study on the phylogenetic relationships of stereospondylomorph temnospondyls is published by Eltink, Schoch & Langer (2019), who name a new clade Superstes.[37]
  • Rediscovery of the original type specimen of Sclerocephalus haeuseri is reported by Schoch, Ebert & Robert (2019).[38]
  • A humerus of a member or a relative of the genus Cyclotosaurus is described from Rhaetian sediments of Exter Formation (Germany) by Konietzko-Meier et al. (2019), representing the geologically youngest record of a non-brachyopoid temnospondyl reported so far.[39]
  • A study on the palaeobiology and lifestyle adaptations of Cherninia denwai and Paracyclotosaurus crookshanki, as indicated by limb bone anatomy and histology, is published online by Mukherjee, Sengupta & Rakshit (2019).[40]
  • Redescription of the Angusaurus, based on a new specimen providing new information of the skull anatomy of this taxon, is published by Fernández-Coll et al. (2019).[41]
  • A study on the anatomy and phylogenetic relationships of Trematosaurus brauni is published by Schoch (2019).[42]
  • A study on the morphology of the mandibular sutures in Metoposaurus krasiejowensis, using histological thin sections, is published by Gruntmejer et al. (2019).[43]
  • Redescription of holotypes of metoposaurid species Anaschisma browni and A. brachygnatha is published online by Gee, Parker & Marsh (2019), who consider Anaschisma brachygnatha and Koskinonodon perfectus to be junior synonyms of Anaschisma browni.[44]
  • A study on the biomechanical role of sutures in the skull of Metoposaurus krasiejowensis is published by Gruntmejer et al. (2019).[45]
  • A study on the anatomy and phylogenetic relationships of "Metoposaurus" azerouali is published by Buffa, Jalil & Steyer (2019), who transfer this species to the genus Arganasaurus.[46]
  • A revision of Triassic temnospondyl fossil material from the Folakara area of Madagascar (Isalo Group, Morondava Basin), including fossils attributed to the species "Metoposaurus" hoffmani, is published by Fortuny et al. (2019).[47]
  • A study on the age of the fossils of Siderops kehli is published by Todd et al. (2019).[48]
  • A study on long bone histology of specimens of the cryptobranchid species Eoscapherpeton asiaticum of different age is published by Skutschas et al. (2019).[49]
  • Fossils of members of Salientia, possibly more closely related to crown-group Anura than to Early Triassic taxa Triadobatrachus and Czatkobatrachus, are described from the Upper Triassic Chinle Formation (Arizona, United States) by Stocker et al. (2019), representing both the first Late Triassic and the earliest equatorial record of Salientia.[50]
  • A study on the two‐dimensional morphology of extant and fossil anuran skulls, evaluating whether phylogeny, development or ecology is a greater influence on anuran skull morphology, and quantifying how anuran skull morphology changed through time, is published by Bardua, Evans & Goswami (2019).[51]
  • A study on the ecomorphological diversity of the Early Cretaceous (Barremian) frogs from the Iberian Peninsula is published by Gómez & Lires (2019).[52]
  • Redescription of the Cretaceous frog Wealdenbatrachus jucarensis is published by Báez & Gómez (2019).[53]
  • A specimen of a frog Genibatrachus baoshanensis with a complete adult salamander belonging or related to the genus Nuominerpeton in its gut is described from the Lower Cretaceous Guanghua Formation (China) by Xing, Niu & Evans (2019).[54]
  • Fossils of the painted frog Latonia gigantea are described from the Miocene of the Vallès-Penedès Basin (Spain) by Villa et al. (2019), representing the first known record of the species from the Iberian Peninsula.[55]
  • Fossils of Latonia cf. gigantea are described from the early Miocene of Greece (representing the first record of the species from that country) by Georgalis et al. (2019), along with other amphibian and reptile fossils.[56]
  • A study on the anatomy of the skull of Latonia seyfriedi is published by Syromyatnikova, Roček & van de Velde (2019), who consider Latonia gigantea to be a likely junior synonym of L. seyfriedi.[57]
  • A study on the morphological diversification of pipimorph frogs and on the impact of ecological and developmental constraints on the evolution of the sacro-caudo-pelvic complex of pipid frogs, as indicated by data from extant and extinct taxa, is published by Gómez & Pérez-Ben (2019).[58]
  • A neurocranium of a clawed frog is described from the Oligocene Nsungwe Formation (Tanzania) by Blackburn et al. (2019), providing the earliest evidence for the genus Xenopus in sub-Saharan Africa reported so far.[59]
  • A study on the developmental stage, physical condition, health, behavior, death, and burial of an exceptionally well-preserved tadpole of a European spadefoot toad from the Miocene (Turolian) konservat-lagerstätte deposit near Tresjuncos (Province of Cuenca, Spain) is published by Talavera, Bustillo & Sanchiz (2019).[60]
  • A redescription of Pelobates praefuscus from the Pliocene of Moldova is published by Syromyatnikova (2019), who considers this taxon to be a species distinct from Pelobates fuscus.[61]
  • A revision of the fossil material attributed to members of the genus Ceratophrys is published by Nicoli (2019).[62]
  • Four new, three-dimensionally preserved specimens of Discosauriscus pulcherrimus, providing new information on the anatomy of the skull of this species, are described from the Lower Permian lacustrine sediments of the Boskovice Basin (Czech Republic) by Klembara & Mikudíková (2019).[63]
  • A study on the morphology of the skeleton of Keraterpeton is published by Milner (2019).[64]
  • New fossil material of Llistrofus pricei, providing new information on the anatomy of this taxon, is described from Permian (Sakmarian) cave deposits of Richards Spur, Oklahoma by Gee et al. (2019), who interpret their findings as indicating that Hapsidopareion lepton is not synonymous with L. pricei.[65]
  • A study on the anatomy of the postcranial skeleton of Carrolla craddocki is published by Mann, Olori & Maddin (2019).[66]
  • A study aiming to determine plausible gaits of Orobates pabsti is published by Nyakatura et al. (2019).[67]
  • A study on the anatomy of the inner ear of seymouriamorphs and diadectomorphs, and on its implications for the knowledge of the phylogenetic relationships of these groups, is published online by Klembara et al. (2019).[68]
  • A study on the relationship between geographic range, climate and extinction risk throughout the evolutionary history of amphibians is published online by Tietje, Rödel & Schobben (2019).[69]

References[edit]

  1. ^ a b c d Ralf Werneburg (2019). "Dissorophoid amphibians from the Carboniferous-Permian boundary of France". Semana. Naturwissenschaftliche Veröffentlichungen des Naturhistorischen Museums Schloss Bertholdsburg Schleusingen. 34: 11–51.
  2. ^ Ralf Werneburg; Joerg W. Schneider; Sebastian Voigt; Abouchouaib Belahmira (2019). "First African record of micromelerpetid amphibians (Temnospondyli, Dissorophoidea)". Journal of African Earth Sciences. 159: Article 103573. Bibcode:2019JAfES.15903573W. doi:10.1016/j.jafrearsci.2019.103573. S2CID 201311310.
  3. ^ Ismar de Souza Carvalho; Federico Agnolin; Mauro A. Aranciaga Rolando; Fernando E. Novas; José Xavier-Neto; Francisco Idalécio de Freitas; José Artur Ferreira Gomes de Andrade (2019). "A new genus of pipimorph frog (Anura) from the Early Cretaceous Crato formation (Aptian) and the evolution of South American tongueless frogs". Journal of South American Earth Sciences. 92: 222–233. Bibcode:2019JSAES..92..222C. doi:10.1016/j.jsames.2019.03.005. hdl:11336/123956. S2CID 134070810.
  4. ^ Arjan Mann; Hillary C. Maddin (2019). "Diabloroter bolti, a short-bodied recumbirostran 'microsaur' from the Francis Creek Shale, Mazon Creek, Illinois". Zoological Journal of the Linnean Society. 187 (2): 494–505. doi:10.1093/zoolinnean/zlz025.
  5. ^ Florian Witzmann; Hans-Dieter Sues; Christian F. Kammerer; Jörg Fröbisch (2019). "A new bystrowianid from the late Permian of Germany: First record of a Permian chroniosuchian (Tetrapoda) outside Russia and China". Journal of Vertebrate Paleontology. 39 (4): e1667366. doi:10.1080/02724634.2019.1667366. S2CID 208572473.
  6. ^ Arjan Mann; Jason D. Pardo; Hillary C. Maddin (2019). "Infernovenator steenae, a new serpentine recumbirostran from the 'Mazon Creek' Lagerstätte further clarifies lysorophian origins". Zoological Journal of the Linnean Society. 187 (2): 506–517. doi:10.1093/zoolinnean/zlz026.
  7. ^ Jia Jia; Ke-Qin Gao (2019). "A new stem hynobiid salamander (Urodela, Cryptobranchoidea) from the Upper Jurassic (Oxfordian) of Liaoning Province, China". Journal of Vertebrate Paleontology. 39 (2): e1588285. doi:10.1080/02724634.2019.1588285. S2CID 164310171.
  8. ^ Andrew R. Milner (2019). "Two primitive trematopid amphibians (Temnospondyli, Dissorophoidea) from the Upper Carboniferous of the Czech Republic". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 109 (1–2): 201–223. doi:10.1017/S1755691018000725. S2CID 133895158.
  9. ^ Stephen Mahony (2019). "Cordicephalus Nevo, 1968 (Amphibia, Anura, Pipimorpha), is a junior homonym of Cordicephalus Wardle, 1947 (Rhabditophora, Cestoda, Diphyllobothriidae)". Journal of Vertebrate Paleontology. 39 (2): e1593186. doi:10.1080/02724634.2019.1593186. S2CID 145983392.
  10. ^ Sanjukta Chakravorti; Dhurjati Prasad Sengupta (2019). "Taxonomy, morphometry and morphospace of cranial bones of Panthasaurus gen. nov. maleriensis from the Late Triassic of India". Journal of Iberian Geology. 45 (2): 317–340. doi:10.1007/s41513-018-0083-1. S2CID 133977267.
  11. ^ Pavel A. Beznosov; Jennifer A. Clack; Ervīns Lukševičs; Marcello Ruta; Per Erik Ahlberg (2019). "Morphology of the earliest reconstructable tetrapod Parmastega aelidae" (PDF). Nature. 574 (7779): 527–531. doi:10.1038/s41586-019-1636-y. PMID 31645719. S2CID 204848799.
  12. ^ Alexis M. Aranciaga Rolando; Federico L. Agnolin; Julián Corsolini (2019). "A new pipoid frog (Anura, Pipimorpha) from the Paleogene of Patagonia. Paleobiogeographical implications". Comptes Rendus Palevol. 18 (7): 725–734. doi:10.1016/j.crpv.2019.04.003.
  13. ^ Celeste M. Pérez-Ben; Raúl O. Gómez; Ana M. Báez (2019). "A new Pliocene true toad (Anura: Bufonidae): first record of an extinct species from South America". Journal of Vertebrate Paleontology. 39 (1): e1576183. doi:10.1080/02724634.2019.1576183. S2CID 133110392.
  14. ^ Rainer R. Schoch; Sebastian Voigt (2019). "A dvinosaurian temnospondyl from the Carboniferous-Permian boundary of Germany sheds light on dvinosaurian phylogeny and distribution". Journal of Vertebrate Paleontology. 39 (1): e1577874. doi:10.1080/02724634.2019.1577874. S2CID 146061107.
  15. ^ Borja Esteve-Altava; Stephanie E. Pierce; Julia L. Molnar; Peter Johnston; Rui Diogo; John R. Hutchinson (2019). "Evolutionary parallelisms of pectoral and pelvic network-anatomy from fins to limbs". Science Advances. 5 (5): eaau7459. Bibcode:2019SciA....5.7459E. doi:10.1126/sciadv.aau7459. PMC 6506248. PMID 31086814.
  16. ^ Per E. Ahlberg (2019). "Follow the footprints and mind the gaps: a new look at the origin of tetrapods". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 109 (1–2): 115–137. doi:10.1017/S1755691018000695.
  17. ^ John A. Long; Alice M. Clement; Brian Choo (2019). "New insights into the origins and radiation of the mid-Palaeozoic Gondwanan stem tetrapods". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 109 (1–2): 139–155. doi:10.1017/S1755691018000750. S2CID 135325133.
  18. ^ Marcello Ruta; Jonathan Krieger; Kenneth D. Angielczyk; Matthew A. Wills (2019). "The evolution of the tetrapod humerus: morphometrics, disparity, and evolutionary rates" (PDF). Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 109 (1–2): 351–369. doi:10.1017/S1755691018000749. S2CID 134149300.
  19. ^ David Marjanović; Michel Laurin (2019). "Phylogeny of Paleozoic limbed vertebrates reassessed through revision and expansion of the largest published relevant data matrix". PeerJ. 6: e5565. doi:10.7717/peerj.5565. PMC 6322490. PMID 30631641.
  20. ^ John R. Bolt; R. Eric Lombard (2019). "Palate and braincase of Whatcheeria deltae Lombard & Bolt, 1995". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 109 (1–2): 177–200. doi:10.1017/S1755691018000774. S2CID 134468463.
  21. ^ Eva C. Herbst; John R. Hutchinson (2019). "New insights into the morphology of the Carboniferous tetrapod Crassigyrinus scoticus from computed tomography". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 109 (1–2): 157–175. doi:10.1017/S1755691018000804.
  22. ^ Eva C. Herbst; Michael Doube; Timothy R. Smithson; Jennifer A. Clack; John R. Hutchinson (2019). "Bony lesions in early tetrapods and the evolution of mineralized tissue repair". Paleobiology. 45 (4): 676–697. doi:10.1017/pab.2019.31.
  23. ^ Jason D. Pardo; Robert Holmes; Jason S. Anderson (2019). "An enigmatic braincase from Five Points, Ohio (Westphalian D) further supports a stem tetrapod position for aïstopods". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 109 (1–2): 255–264. doi:10.1017/S1755691018000567. S2CID 134371584.
  24. ^ Jennifer A. Clack; Marcello Ruta; Andrew R. Milner; John E. A. Marshall; Timothy R. Smithson; Keturah Z. Smithson (2019). "Acherontiscus caledoniae: the earliest heterodont and durophagous tetrapod". Royal Society Open Science. 6 (5): Article ID 182087. Bibcode:2019RSOS....682087C. doi:10.1098/rsos.182087. PMC 6549999. PMID 31218034.
  25. ^ Eamon Doyle; Aodhán Ó Gogáin (2019). "Tetrapod bones from the Clare Shale Formation (Pennsylvanian, Bashkirian) of County Clare, Ireland". Irish Journal of Earth Sciences. 37: 19–25. doi:10.3318/ijes.2019.37.2. S2CID 202184404.
  26. ^ Gabrielle Ruth Adams; Arjan Mann; Hillary C. Maddin (2019). "New embolomerous tetrapod material and a faunal overview of the Mississippian-aged Point Edward locality, Nova Scotia, Canada". Canadian Journal of Earth Sciences. 57 (3): 407–417. doi:10.1139/cjes-2018-0326. S2CID 203134773.
  27. ^ Florian Witzmann; Marcello Ruta (2019). "Evolutionary changes in the orbits and palatal openings of early tetrapods, with emphasis on temnospondyls" (PDF). Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 109 (1–2): 333–350. doi:10.1017/S1755691018000919. S2CID 135192148.
  28. ^ Celeste M. Pérez-Ben; Raúl O. Gómez (2019). "Morphological integration and evolution of the skull roof in temnospondyl amphibians". Journal of Iberian Geology. 45 (2): 341–351. doi:10.1007/s41513-018-0088-9. S2CID 135109958.
  29. ^ Celeste M. Pérez-Ben; Ana M. Báez; Rainer R. Schoch (2019). "Morphological evolution of the skull roof in temnospondyl amphibians mirrors conservative ontogenetic patterns". Zoological Journal of the Linnean Society. 188 (1): 163–179. doi:10.1093/zoolinnean/zlz068.
  30. ^ Hannah C. Bird; Angela C. Milner; Anthony P. Shillito; Richard J. Butler (2019). "A lower Carboniferous (Visean) tetrapod trackway represents the earliest record of an edopoid amphibian from the UK". Journal of the Geological Society. 177 (2): 276–282. doi:10.1144/jgs2019-149. S2CID 213393740.
  31. ^ Rainer R. Schoch (2019). "The stapes of Edops craigi and ear evolution in the lissamphibian stem group". Acta Zoologica. 100 (2): 126–134. doi:10.1111/azo.12238.
  32. ^ Ralf Werneburg; Florian Witzmann; Joerg W. Schneider (2019). "The oldest known tetrapod (Temnospondyli) from Germany (Early Carboniferous, Viséan)". PalZ. 93 (4): 679–690. doi:10.1007/s12542-018-00442-x. S2CID 133869359.
  33. ^ Jade B. Atkins; Robert R. Reisz; Hillary C. Maddin (2019). "Braincase simplification and the origin of lissamphibians". PLOS ONE. 14 (3): e0213694. Bibcode:2019PLoSO..1413694A. doi:10.1371/journal.pone.0213694. PMC 6430379. PMID 30901341.
  34. ^ Bryan M. Gee; Joseph J. Bevitt; Robert R. Reisz (2019). "Dissorophid diversity at the early Permian cave system near Richards Spur, Oklahoma, USA". Palaeontologia Electronica. 22 (2): Article number 22.2.46. doi:10.26879/976.
  35. ^ Bryan M. Gee; Joseph J. Bevitt; Robert R. Reisz (2019). "A juvenile specimen of the trematopid Acheloma from Richards Spur, Oklahoma and challenges of trematopid ontogeny". Frontiers in Earth Science. 7: Article 38. Bibcode:2019FrEaS...7...38G. doi:10.3389/feart.2019.00038.
  36. ^ Bryan M. Gee; Robert R. Reisz (2019). "The amphibamiform Nanobamus macrorhinus from the early Permian of Texas". Journal of Paleontology. 94 (2): 366–377. doi:10.1017/jpa.2019.72. S2CID 203119272.
  37. ^ Estevan Eltink; Rainer R. Schoch; Max C. Langer (2019). "Interrelationships, palaeobiogeography and early evolution of Stereospondylomorpha (Tetrapoda: Temnospondyli)". Journal of Iberian Geology. 45 (2): 251–267. doi:10.1007/s41513-019-00105-z. S2CID 146595773.
  38. ^ Rainer R. Schoch; Martin Ebert; Emmanuel Robert (2019). "Type specimen of Sclerocephalus haeuseri GOLDFUSS, 1847 rediscovered". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 292 (3): 315–320. doi:10.1127/njgpa/2019/0824. S2CID 189964433.
  39. ^ Dorota Konietzko-Meier; Jennifer D. Werner; Tanja Wintrich; P. Martin Sander (2019). "A large temnospondyl humerus from the Rhaetian (Late Triassic) of Bonenburg (Westphalia, Germany) and its implications for temnospondyl extinction". Journal of Iberian Geology. 45 (2): 287–300. doi:10.1007/s41513-018-0092-0. S2CID 134049099.
  40. ^ Debarati Mukherjee; Dhurjati P. Sengupta; Nibedita Rakshit (2019). "New biological insights into the Middle Triassic capitosaurs from India as deduced from limb bone anatomy and histology". Papers in Palaeontology. 6 (1): 93–142. doi:10.1002/spp2.1263. S2CID 198254051.
  41. ^ Meritxell Fernández-Coll; Thomas Arbez; Federico Bernardini; Josep Fortuny (2019). "Cranial anatomy of the Early Triassic trematosaurine Angusaurus (Temnospondyli: Stereospondyli): 3D endocranial insights and phylogenetic implications" (PDF). Journal of Iberian Geology. 45 (2): 269–286. doi:10.1007/s41513-018-0064-4. S2CID 133776999.
  42. ^ Rainer R. Schoch (2019). "Osteology of the temnospondyl Trematosaurus brauni Burmeister, 1849 from the Middle Buntsandstein of Bernburg, Germany". Palaeodiversity. 12 (1): 41–63. doi:10.18476/pale.v12.a4.
  43. ^ Kamil Gruntmejer; Dorota Konietzko-Meier; Adam Bodzioch; Josep Fortuny (2019). "Morphology and preliminary biomechanical interpretation of mandibular sutures in Metoposaurus krasiejowensis (Temnospondyli, Stereospondyli) from the Upper Triassic of Poland". Journal of Iberian Geology. 45 (2): 301–316. doi:10.1007/s41513-018-0072-4.
  44. ^ Bryan M. Gee; William G. Parker; Adam D. Marsh (2019). "Redescription of Anaschisma (Temnospondyli: Metoposauridae) from the Late Triassic of Wyoming and the phylogeny of the Metoposauridae". Journal of Systematic Palaeontology. 18 (3): 233–258. doi:10.1080/14772019.2019.1602855. S2CID 190896742.
  45. ^ Kamil Gruntmejer; Dorota Konietzko‐Meier; Jordi Marcé‐Nogué; Adam Bodzioch; Josep Fortuny (2019). "Cranial suture biomechanics in Metoposaurus krasiejowensis (Temnospondyli, Stereospondyli) from the upper Triassic of Poland". Journal of Morphology. 280 (12): 1850–1864. doi:10.1002/jmor.21070. PMID 31638728. S2CID 204834395.
  46. ^ Valentin Buffa; Nour‐Eddine Jalil; J.‐Sebastien Steyer (2019). "Redescription of Arganasaurus (Metoposaurus) azerouali (Dutuit) comb. nov. from the Upper Triassic of the Argana Basin (Morocco), and the first phylogenetic analysis of the Metoposauridae (Amphibia, Temnospondyli)" (PDF). Papers in Palaeontology. 5 (4): 699–717. doi:10.1002/spp2.1259. S2CID 195580152.
  47. ^ Josep Fortuny; Thomas Arbez; Eudald Mujal; J. Sébastien Steyer (2019). "Reappraisal of "Metoposaurus hoffmani" Dutuit, 1978, and description of new temnospondyl specimens from the Middle–Late Triassic of Madagascar (Morondava Basin)". Journal of Vertebrate Paleontology. 39 (1): e1576701. doi:10.1080/02724634.2019.1576701. S2CID 146075668.
  48. ^ Christopher N. Todd; Eric M. Roberts; Espen M. Knutsen; Andrew C. Rozefelds; Hui-Qing Huang; Carl Spandler (2019). "Refined age and geological context of two of Australia's most important Jurassic vertebrate taxa (Rhoetosaurus brownei and Siderops kehli), Queensland". Gondwana Research. 76: 19–25. Bibcode:2019GondR..76...19T. doi:10.1016/j.gr.2019.05.008. S2CID 199105458.
  49. ^ Pavel P. Skutschas; Pavel G. Saburov; Elizaveta A. Boitsova; Veniamin V. Kolchanov (2019). "Ontogenetic changes in long-bone histology of the cryptobranchid Eoscapherpeton asiaticum (Amphibia: Caudata) from the Late Cretaceous of Uzbekistan". Comptes Rendus Palevol. 18 (3): 306–316. doi:10.1016/j.crpv.2019.02.002.
  50. ^ Michelle R. Stocker; Sterling J. Nesbitt; Ben T. Kligman; Daniel J. Paluh; Adam D. Marsh; David C. Blackburn; William G. Parker (2019). "The earliest equatorial record of frogs from the Late Triassic of Arizona". Biology Letters. 15 (2): Article ID 20180922. doi:10.1098/rsbl.2018.0922. PMC 6405462. PMID 30958136.
  51. ^ Carla Bardua; Susan E. Evans; Anjali Goswami (2019). "Phylogeny, ecology and deep time: 2D outline analysis of anuran skulls from the Early Cretaceous to the Recent". Palaeontology. 62 (3): 417–431. doi:10.1111/pala.12405.
  52. ^ Raúl O. Gómez; Andres I. Lires (2019). "High ecomorphological diversity among Early Cretaceous frogs from a large subtropical wetland of Iberia". Comptes Rendus Palevol. 18 (7): 711–723. doi:10.1016/j.crpv.2019.07.005. hdl:11336/148671.
  53. ^ Ana M. Báez; Raúl O. Gómez (2019). "Redescription of the overlooked basal frog Wealdenbatrachus reveals increased diversity among Early Cretaceous anurans". Cretaceous Research. 99: 14–29. doi:10.1016/j.cretres.2019.02.006. S2CID 133867438.
  54. ^ Lida Xing; Kecheng Niu; Susan E. Evans (2019). "Inter-amphibian predation in the Early Cretaceous of China". Scientific Reports. 9 (1): Article number 7751. Bibcode:2019NatSR...9.7751X. doi:10.1038/s41598-019-44247-7. PMC 6533365. PMID 31123302.
  55. ^ Andrea Villa; Massimo Delfino; Àngel H. Luján; Sergio Almécija; David M. Alba (2019). "First record of Latonia gigantea (Anura, Alytidae) from the Iberian Peninsula". Historical Biology: An International Journal of Paleobiology. 31 (3): 371–382. doi:10.1080/08912963.2017.1371712. hdl:2318/1646462. S2CID 134748481.
  56. ^ Georgios L. Georgalis; Andrea Villa; Martin Ivanov; Socrates Roussiakis; Panagiotis Skandalos; Massimo Delfino (2019). "Early Miocene herpetofaunas from the Greek localities of Aliveri and Karydia – bridging a gap in the knowledge of amphibians and reptiles from the early Neogene of southeastern Europe" (PDF). Historical Biology: An International Journal of Paleobiology. 31 (8): 1045–1064. doi:10.1080/08912963.2017.1417404. S2CID 90978818.
  57. ^ Elena Syromyatnikova; Zbyněk Roček; Sabrina van de Velde (2019). "New discoveries in the frog Latonia seyfriedi (Anura: Alytidae) and their impact on taxonomy of the genus Latonia". PalZ. 93 (4): 669–677. doi:10.1007/s12542-019-00477-8. S2CID 198140474.
  58. ^ Raúl O. Gómez; Celeste M. Pérez-Ben (2019). "Fossils reveal long-term continuous and parallel innovation in the sacro-caudo-pelvic complex of the highly aquatic pipid frogs". Frontiers in Earth Science. 7: Article 56. Bibcode:2019FrEaS...7...56G. doi:10.3389/feart.2019.00056. hdl:11336/113308.
  59. ^ David C. Blackburn; Daniel J. Paluh; Isaac Krone; Eric M. Roberts; Edward L. Stanley; Nancy J. Stevens (2019). "The earliest fossil of the African clawed frog (genus Xenopus) from sub-Saharan Africa". Journal of Herpetology. 53 (2): 125–130. doi:10.1670/18-139.
  60. ^ Rosario R. Talavera; María-ángeles Bustillo; Borja Sanchiz (2019). "Paleobiological forensic study of an upper Miocene Pelobates tadpole (Anura, Pelobatidae) from the Tresjuncos lagerstätte of central Spain". Journal of Vertebrate Paleontology. 39 (4): e1669615. doi:10.1080/02724634.2019.1669615. S2CID 208560324.
  61. ^ Elena V. Syromyatnikova (2019). "Redescription of Pelobates praefuscus Khosatzky, 1985 and new records of Pelobates from the late Miocene–Pleistocene of Eastern Europe". Historical Biology: An International Journal of Paleobiology. 31 (7): 888–897. doi:10.1080/08912963.2017.1402015. S2CID 91069740.
  62. ^ Laura Nicoli (2019). "The fossil record of Ceratophrys Wied-Neuwied (Anura: Ceratophryidae): a revision and update of fossil South American horned frogs". Zootaxa. 4658 (1): 37–68. doi:10.11646/zootaxa.4658.1.2. PMID 31716756. S2CID 202040793.
  63. ^ Jozef Klembara; Marika Mikudíková (2019). "New cranial material of Discosauriscus pulcherrimus (Seymouriamorpha, Discosauriscidae) from the Lower Permian of the Boskovice Basin (Czech Republic)". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 109 (1–2): 225–236. doi:10.1017/S1755691018000798. S2CID 134459062.
  64. ^ Angela C. Milner (2019). "A morphological revision of Keraterpeton, the earliest horned nectridean from the Pennsylvanian of England and Ireland". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 109 (1–2): 237–253. doi:10.1017/S1755691018000579. hdl:10141/622627. S2CID 135131142.
  65. ^ Bryan M. Gee; Joseph J. Bevitt; Ulf Garbe; Robert R. Reisz (2019). "New material of the 'microsaur' Llistrofus from the cave deposits of Richards Spur, Oklahoma and the paleoecology of the Hapsidopareiidae". PeerJ. 7: e6327. doi:10.7717/peerj.6327. PMC 6348957. PMID 30701139.
  66. ^ Arjan Mann; Jennifer C. Olori; Hillary C. Maddin (2019). "Postcranial anatomy of the 'microsaur' Carrolla craddocki from the Lower Permian of Texas". Journal of Vertebrate Paleontology. 38 (6): e1532436. doi:10.1080/02724634.2018.1532436. S2CID 91617953.
  67. ^ John A. Nyakatura; Kamilo Melo; Tomislav Horvat; Kostas Karakasiliotis; Vivian R. Allen; Amir Andikfar; Emanuel Andrada; Patrick Arnold; Jonas Lauströer; John R. Hutchinson; Martin S. Fischer; Auke J. Ijspeert (2019). "Reverse-engineering the locomotion of a stem amniote" (PDF). Nature. 565 (7739): 351–355. Bibcode:2019Natur.565..351N. doi:10.1038/s41586-018-0851-2. PMID 30651613. S2CID 58014495.
  68. ^ Jozef Klembara; Miroslav Hain; Marcello Ruta; David S. Berman; Stephanie E. Pierce; Amy C. Henrici (2019). "Inner ear morphology of diadectomorphs and seymouriamorphs (Tetrapoda) uncovered by high‐resolution x‐ray microcomputed tomography, and the origin of the amniote crown group". Palaeontology. 63 (1): 131–154. doi:10.1111/pala.12448.
  69. ^ Melanie Tietje; Mark-Oliver Rödel; Martin Schobben (2019). "The effect of geographic range and climate on extinction risk in the deep-time amphibian fossil record". Palaeogeography, Palaeoclimatology, Palaeoecology. 537: Article 109414. doi:10.1016/j.palaeo.2019.109414.