2024 in paleobotany

From Wikipedia, the free encyclopedia
List of years in paleobotany
In paleontology
2021
2022
2023
2024
2025
2026
2027
In arthropod paleontology
2021
2022
2023
2024
2025
2026
2027
In paleoentomology
2021
2022
2023
2024
2025
2026
2027
In paleomalacology
2021
2022
2023
2024
2025
2026
2027
In reptile paleontology
2021
2022
2023
2024
2025
2026
2027
In archosaur paleontology
2021
2022
2023
2024
2025
2026
2027
In mammal paleontology
2021
2022
2023
2024
2025
2026
2027
In paleoichthyology
2021
2022
2023
2024
2025
2026
2027

This paleobotany list records new fossil plant taxa that were to be described during the year 2024, as well as notes other significant paleobotany discoveries and events which occurred during 2024.

Algae[edit]

Chlorophytes[edit]

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Bediaella[1]

Gen. et sp. nov

Ernst, Vachard & Rodríguez

Devonian (Pragian)

 Spain

A probable member of Dasycladales. The type species is B. hispanica.

Clypeina? pamelareidae[2]

Sp. nov

Valid

Bucur, Del Piero & Martini

Late Triassic (Norian)

 Canada
( Yukon)

A member of Dasycladales.

Phycological research[edit]

  • Putative dasycladalean alga Voronocladus dryganti from the Silurian of Ukraine is argued by LoDuca (2024) to be a member of Bryopsidales; the author also reinterprets purported graptolite-like epibionts of V. dryganti, originally described as the new taxon Podoliagraptus algaeoides, as actually representing the uppermost siphons of mature thalli of V. dryganti.[3]
  • A diverse charophyte flora, including fossil material of Echinochara cf. peckii representing the oldest record of the family Clavatoraceae reported to date, is described from the Middle Jurassic (Bathonian) marginal marine beds of southern France by Trabelsi, Sames & Martín-Closas (2024).[4]

Lycophytes[edit]

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Selaginellites argentinensis[5]

Sp. nov

Cariglino, Zavattieri & Lara

Triassic

 Argentina

A member of the family Selaginellaceae.

Ferns and fern allies[edit]

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Cystodium parasorbifolium[6]

Sp. nov

Li & Moran in Guo et al.

Cretaceous

Burmese amber

 Myanmar

A member of the family Cystodiaceae.

Henanotheca qingyunensis[7]

Sp. nov

Valid

Guo, Zhou & Feng in Guo et al.

Permian (Lopingian)

Xuanwei Formation

 China

A filicalean fern.

Hexaphyllostrobus[8]

Gen. et sp. nov

D'Antonio et al.

Carboniferous

Mazon Creek fossil beds

 United States

A member of Sphenophyllales. Genus includes new species H. kostorhysii.

Palaeosorum siwalikum[9]

Sp. nov

Valid

Kundu, Hazra & Khan in Kundu et al.

Miocene

 India

A member of the family Polypodiaceae. Announced in 2023; the final version of the article naming it was published in 2024.

Pteridological research[edit]

  • A study on the phylogenetic relationships of extant and fossil members of Cyatheales, and on the biogeography of the group throughout its evolutionary history, is published by Ramírez-Barahona (2024).[10]
  • Machado et al. (2024) describe fossil material of Pteridium sp. cf. P. esculentum from the Miocene Ñirihuau Formation (Argentina) representing the oldest and southernmost record of Pteridium from South America reported to date.[11]

Bennettitales[edit]

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Weltrichia huitzilopochtlii[12]

Comb. nov

(Wieland)

Early Jurassic (Toarcian)

Rosario Formation

 Mexico

A member of Bennettitales. Moved from Williamsonia huitzilopochtli Wieland.

Williamsoniella rosarensis[13]

Sp. nov

Velasco de León et al.

Early-Middle Jurassic

Cualac Formation

 Mexico

A member of Bennettitales belonging to the family Williamsoniaceae.

Conifers[edit]

Cupressaceae[edit]

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Amurodendron[14]

Gen. et sp. nov

Valid

Sokolova et al.

Paleocene

 Russia
( Amur Oblast)

A conifer with affinities with the family Cupressaceae. The type species is A. pilosum. Published online in 2024, but the issue date is listed as December 2023.

Cupressoxylon dianneae[15]

Sp. nov

Vanner et al.

Cretaceous

Tupuangi Formation

 New Zealand

Pinaceae[edit]

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Paranothotsuga[16]

Gen. et comb. nov

Valid

Kowalski in Kowalski et al.

Oligocene to Pliocene

Cottbus Formation

 Germany

The type species is "Pseudotsuga" jechorekiae Czaja (2000).

Tsuga weichangensis[17]

Sp. nov

In press

Li et al.

Miocene

 China

A species of Tsuga.
Announced in Feb 2023, formally published Jan 2024

Podocarpaceae[edit]

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Protophyllocladoxylon jacobusii[15]

Sp. nov

Vanner et al.

Cretaceous

Tupuangi Formation

 New Zealand

Other conifers[edit]

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Cratoxylon[18]

Gen. et sp. nov

Conceição et al.

Early Cretaceous

Crato Formation

 Brazil

A member of Pinidae of uncertain affinities. The type species is C. placidoi. The name is preoccupied by Cratoxylon Blume.

Ourostrobus einbergensis[19]

Sp. nov

Valid

Van Konijnenburg-van Cittert et al.

Late Triassic (Rhaetian)

 Germany

A conifer cone.

Shanxiopitys[20]

Gen. et sp. nov

Valid

Shi et al.

Permian (Lopingian)

Sunjiagou Formation

 China

A conifer wood. The type species is S. zhangziensis.

Sphaerostrobus einbergensis[19]

Sp. nov

Valid

Van Konijnenburg-van Cittert et al.

Late Triassic (Rhaetian)

 Germany

A conifer cone.

Conifer research[edit]

  • Xie, Gee & Griebeler (2024) use growth models based on the height–diameter relationships of extant araucarians to determine heights of araucariaceous logs from the Upper Jurassic Morrison Formation (Utah, United States).[21]

Flowering plants[edit]

Monocots[edit]

Arecales[edit]

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Palmoxylon coryphaoides[22]

Sp. nov

Valid

Ali, Roy & Khan in Ali et al.

Cretaceous-Paleocene (Maastrichtian-Danian)

Deccan Intertrappean Beds

 India

Fossil wood of a member of the family Arecaceae.

Sabalites siwalicus[23]

Sp. nov

Valid

Mahato & Khan

Miocene

Chunabati Formation

 India

Published online in 2024, but the issue date is listed as December 2023.

Spinopinnophyllum[24]

Gen. et sp. nov

Kumar, Su & Khan in Kumar et al.

Late Cretaceous (Maastrichtian)-Paleocene (Danian)

Deccan Intertrappean Beds

 India

A member of the family Arecaceae. The type species is S. acanthorachis.

Dioscoreales[edit]

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Dioscorea lindgrenii[25]

Sp. nov

In press

Herrera & Manchester

Eocene

Green River Formation

 United States
( Wyoming)

A species of Dioscorea.

Dioscorea shermanii[25]

Sp. nov

In press

Herrera & Manchester

Eocene

Green River Formation

 United States
( Wyoming)

A species of Dioscorea.

Poales[edit]

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Sparganium tuberculatum[16]

Sp. nov

Valid

Kowalski in Kowalski et al.

Miocene

Spremberg Formation

 Germany

A species of Sparganium.

Superasterids[edit]

Ericales[edit]

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Pterosinojackia[16]

Gen. et sp. nov

Valid

Kowalski in Kowalski et al.

Oligocene to Miocene

 Germany

A member of the family Styracaceae. The type species is P. lusatica.

Gentianales[edit]

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Aspidospermoxylon guatambue[26]

Sp. nov

Ramos et al.

Pleistocene

El Palmar Formation

 Argentina

Fossil wood of a member of the family Apocynaceae.

Aspidospermoxylon paleoneuron[26]

Sp. nov

Ramos et al.

Pleistocene

El Palmar Formation

 Argentina

Fossil wood of a member of the family Apocynaceae.

Superrosids[edit]

Fabales[edit]

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Hymenaeaphyllum[27]

Gen. et sp. nov

Hernández-Damián, Rubalcava-Knoth & Cevallos-Ferriz

Miocene

La Quinta Formation
(Mexican amber)

 Mexico

A member of the subfamily Detarioideae belonging to the tribe Detarieae. The type species is H. mirandae.

Mezoneuron zhekunii[28]

Sp. nov

Zhao, Jia & Su in Zhao et al.

Miocene

Sanhaogou Formation

 China

A species of Mezoneuron.

Fagales[edit]

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Juglans cordata[29]

Sp. nov

Manchester et al.

Eocene

Buchanan Lake Formation

 Canada
( Nunavut)

A species of Juglans.

Juglans eoarctica[29]

Sp. nov

Manchester et al.

Eocene

Buchanan Lake Formation

 Canada
( Nunavut)

A species of Juglans.

Juglans nathorstii[29]

Sp. nov

Manchester et al.

Eocene

Buchanan Lake Formation

 Canada
( Nunavut)

A species of Juglans.

Morella stoppii[16]

Comb. nov

Valid

(Kirchheimer)

Miocene

 Germany

A member of the family Myricaceae; moved from Myrica stoppii Kirchheimer (1942).

Malpighiales[edit]

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Passiflora axsmithii[30]

Sp. nov

Stults, Hermsen & Starnes

Oligocene

Catahoula Formation

 United States
( Mississippi)

A species of Passiflora.

Myrtales[edit]

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Andesanthus risaraldense[31]

Sp. nov

Ayala-Usma & Lozano-Gutiérrez in Ayala-Usma et al.

Pleistocene

 Colombia

A species of Andesanthus.

Qualeoxylon lafila[32]

Sp. nov

Woodcock

Eocene

 Peru

Fossil wood with affinities with the family Vochysiaceae.

Terminalioxylon gumminae[31]

Sp. nov

Ayala-Usma & Lozano-Gutiérrez in Ayala-Usma et al.

Pleistocene

 Colombia

Fossil wood of a member of the family Combretaceae.

Rosales[edit]

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Ziziphoxylon sayaz[33]

Sp. nov

Valid

Akkemik in Akkemik & Toprak

Miocene (Burdigalian-Serravallian)

Mut Formation

 Turkey

Fossil wood of a member of the family Rhamnaceae.

Sapindales[edit]

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Anacardium quindiuense[31]

Sp. nov

Ayala-Usma, Lozano-Gutiérrez & Orejuela in Ayala-Usma et al.

Pleistocene

 Colombia

A species of Anacardium.

Dobineaites[34]

Gen. et comb. nov

Valid

Wilf et al.

Eocene

Laguna del Hunco Formation

 Argentina

A member of Anacardiaceae related to Dobinea; a new genus for "Celtis" ameghinoi.

Pericuxylon[35]

Gen. et sp. nov

Valid

Mejia-Roldán, Rodríguez-Reyes & Estrada-Ruiz in Mejia-Roldán et al.

Eocene

Tepetate Formation

 Mexico

Fossil wood of a member of the family Anacardiaceae. The type species is P. ductifera.

Saxifragales[edit]

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Liquidambar nanningensis[36]

Sp. nov

Xu, Zdravchev, Maslova & Jin in Xu et al.

Oligocene

Yongning Formation

 China

A species of Liquidambar.

Other angiosperms[edit]

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Asterostemon[37]

Gen. et 2 sp. nov

Friis, Crane & Pedersen in Friis et al.

Early Cretaceous (Aptian–Albian)

Figueira da Foz Formation

 Portugal

A chloranthoid flowering plant. The type species is A. hedlundii; genus also includes A. norrisii.

Cryptocarya latiradiata[38]

Sp. nov

Zhang, Su & Oskolski in Zhang et al.

Miocene

Dajie Formation

 China

A species of Cryptocarya.

Magnolia germanica[16]

Comb. nov

Valid

(Mai)

Oligocene to Miocene

 Germany

A species of Magnolia; moved from Manglietia germanica Mai (1971).

Nothophylica[39]

Gen. et comb. nov

Beurel et al.

Cretaceous

Burmese amber

 Myanmar

A flowering plant of uncertain affinities. Oskolski et al. (2024) interpreted it as a flowering plant with an affinity to Rhamnaceae, possibly to an extinct basal lineage;[40] on the other hand Beurel et al. (2024) interpreted it as a flowering plant with probable magnoliid affinities.[39] The type species is "Phylica" piloburmensis Shi et al. (2022).

Pabiania enochii[41]

Sp. nov

Rubalcava-Knoth & Cevallos-Ferriz

Late Cretaceous

Olmos Formation

 Mexico

A member of Laurales.

Swamyflora[37]

Gen. et sp. nov

Friis, Crane & Pedersen in Friis et al.

Early Cretaceous (Albian)

Potomac Group

 United States
( Virginia)

A chloranthoid flowering plant. The type species is S. alata.

Wasmyflora[37]

Gen. et sp. nov

Friis, Crane & Pedersen in Friis et al.

Early Cretaceous (Barremian–Aptian)

Vale de Água clay pit complex

 Portugal

A chloranthoid flowering plant. The type species is W. portugallica.

  • The first fossil record of a flower of a member of the genus Cryptocarya is reported from the Miocene Zhangpu amber (China) by Beurel et al. (2024).[42]

Other plants[edit]

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Callipteris seshufenensis[43]

Sp. nov

Valid

Chen in Chen, Zhang & Yang

Permian

 China

A callipterid seed fern.

Cordaites pastuchovicensis[44]

Sp. nov

Valid

Šimůnek

 Czech Republic

Cordaites roprachticensis[44]

Sp. nov

Valid

Šimůnek

 Czech Republic

Cordaites setlikii[44]

Sp. nov

Valid

Šimůnek

 Czech Republic

Cyrillopteris orbicularis[45]

Comb. nov

(Halle)

Permian

Upper Shihezi Formation

 China

A seed fern. Moved from Odontopteris orbicularis Halle (1927).

Dicroidium sinensis[46]

Sp. nov

Sun & Deng in Sun et al.

Middle Triassic

Tongchuan Formation

 China

A seed fern belonging to the family Umkomasiaceae.

Frullania delgadillii[47]

Sp. nov

Juárez-Martínez & Estrada-Ruiz in Juárez-Martínez, Córdova-Tabares & Estrada-Ruiz

Miocene

Mexican amber

 Mexico

A liverwort, a species of Frullania.

Harrisiothecium roesleri[48]

Comb. nov

(Van Konijnenburg-van Cittert et al.)

Late Triassic

 Germany

Pollen organ of a plant of uncertain affinities. Moved from Hydropterangium roesleri Van Konijnenburg-van Cittert et al. (2017)

Harrisiothecium sanduense[48]

Sp. nov

Shi et al.

Late Triassic

Yangmeilong Formation

 China

Pollen organ of a plant of uncertain affinities, associated with pinnate leaves of Ptilozamites.

Jubula polessica[49]

Sp. nov

Valid

Mamontov, Atwood & Perkovsky in Mamontov et al.

Eocene

Rovno amber

 Ukraine

A liverwort, a species of Jubula.

Laiyangia[50]

Gen. et sp. nov

Jin in Jin et al.

Early Cretaceous (Hauterivian–Barremian)

Laiyang Formation

 China

A member of the family Ephedraceae. The type species is L. compacta.

Leptoscyphus davidii[51]

Sp. nov

Valid

Mamontov et al.

Eocene

Rovno amber

 Ukraine

A liverwort, a species of Leptoscyphus.

Panxianopteris[52]

Gen. et sp. nov

Qin, He, Hilton & Wang in Qin et al.

Permian

Xuanwei Formation

 China

A taeniopterid. The type species is P. taeniopteroides.

Protocupressinoxylon baii[53]

Sp. nov

Jiang & Wan in Jiang et al.

Permian

Upper Shihhotse Formation

 China

Fossil trunk of a gymnosperm.

Pseudotorellia oskolica[54]

Sp. nov

Nosova in Nosova, Fedyaevskiy & Lyubarova

Middle Jurassic (Bathonian–Callovian)

 Russia
( Belgorod Oblast)

A gymnosperm belonging to the family Pseudotorelliaceae.

Radula tikhomirovae[55]

Sp. nov

Valid

Mamontov & Perkovsky in Mamontov et al.

Eocene

Rovno amber

 Ukraine

A liverwort, a species of Radula.

Sanfordiacaulis[56]

Gen. et sp. nov

Gastaldo et al.

Carboniferous (Tournaisian)

Albert Formation

 Canada
( New Brunswick)

A tree of uncertain affinities. The type species is S. densifolia.

Other plant research[edit]

  • Redescription and a study on the affinities of Stauroxylon beckii is published by Durieux et al. (2024).[57]
  • A study on the morphological diversity of cycad leaves throughout their evolutionary history, providing evidence of a dynamic history of diversification, is published by Coiro & Seyfullah (2024).[58]
  • Zhang et al. (2024) compile a dataset of macroscopic and cuticular traits of fossils of members of the group Czekanowskiales from China, and use it to classify the studied fossils on the basis of quantitative analytical evidence.[59]
  • A study on the morphology and affinities of Furcula granulifer is published by Coiro et al. (2024), who interpret the studied plant as a likely relative of pteridosperms such as Scytophyllum and Vittaephyllum, and interpret F. granulifer as a plant that evolved its hierarchical vein system of leaves convergently with the flowering plants.[60]
  • Possible caytonialean pteridosperm fossils are described from the Bajocian strata in the Karachay-Cherkessia (Russia) by Naugolnykh & Mitta (2024).[61]

Palynology[edit]

Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Jiangsupollis intertrappea[62]

Sp. nov

Thakre et al.

Late Cretaceous (Maastrichtian)

 India

Palynological research[edit]

  • A study on the palynoflora from the Permian Emakwezini Formation (South Africa) is published by Balarino et al. (2024), who interpret the studied fossils as providing evidence of the presence of complex forests during the Guadalupian, with plant diversity greater than indicated by the macrofloral record.[63]
  • A study on the age of the Santa Clara Abajo and the Santa Clara Arriba formations and their palynomorph assemblages, previously inferred to be Carnian-Norian in age, is published by Benavente et al. (2024), who determine an upper Anisian age for both formations, and interpret their findings as indicating that the taxonomic composition of Triassic Gondwanan palynomorph assemblages correlates more strongly with latitude than with geologic age.[64]
  • The interpretation of Cycadopites and Ricciisporites proposed by Vajda et al. (2023), who considered them to represent, respectively, normal and aberrant pollen produced by the same plant with Lepidopteris ottonis foliage and Antevsia zeilleri pollen sacs,[65] is contested by Zavialova (2024);[66] Vajda et al. (2024) subsequently reaffirm that Antevsia zeilleri produced Cycadopites and Ricciisporites pollen.[67]
  • Evidence from pollen and spores from the Jiyuan Basin (China), interpreted as indicative of a relationship between two peaks of wildfires of different types and changes in plant communities during the Triassic-Jurassic transition, is presented by Zhang et al. (2024).[68]
  • Evidence of high abundances of malformed fern spores from the Lower Saxony Basin (Germany) during the Triassic–Jurassic transition, interpreted as indicative of persistence of volcanic-induced mercury pollution after the Triassic–Jurassic extinction event, is presented by Bos et al. (2024).[69]
  • Evidence from fossil pollen assigned to the form genus Classopollis, interpreted as indicative of existence of a refugium of members of the family Cheirolepidiaceae, is reported from the Paleocene Lower Wilcox Group (Texas, United States) by Smith et al. (2024).[70]
  • Evidence from fossil pollen interpreted as indicative of existence of ecological corridors linking Andean, Atlantic and Amazonian regions of South America during the Last Glacial Maximum, resulting in establishment of complex connectivity patterns between plants from the studied parts of South America, is presented by Pinaya et al. (2024).[71]

General Research[edit]

  • A study addressing and evaluating the uncertainty of plant fossil phylogenetics is published by Coiro (2024).[72]
  • Review of functional traits in the plant fossil record is published by McElwain et al. (2024).[73]
  • Davies, McMahon & Berry (2024) describe plant fossils from the Devonian (Eifelian) Hangman Sandstone Formation (Somerset and Devon, United Kingdom), intepreted as remains of cladoxylopsid-dominated forest and possibly the oldest global evidence for the spacing of growing trees.[74]
  • Evidence of changes of composition and diversity of the flora from the Carboniferous coal swamps of the Nord-Pas-de-Calais Coalfield (France) in response to climate and landscape changes is presented by Molina-Solís et al. (2024).[75]
  • A study on changes of floral communities in southwestern China during the Permian-Triassic transition is published by Hua et al. (2024), who provide evidence indicative of frequent wildfires that destroyed the stability of wetlands prior to the main extinction phase and inhibited recovery in the aftermath of the Permian–Triassic extinction event, and resulted in gradual replacement of fern-dominated floral communities by gymnosperm-dominated ones.[76]
  • Gurung et al. (2024) use a new vegetation and climate model to study links between plant geographical range, the long-term carbon cycle and climate, and find that reduced geographical range of plants in Pangaea resulted in increased atmospheric CO2 concentration during the Triassic and Jurassic periods, while the expande geographical range of plants after the breakup of Pangaea amplified global CO2 removal.[77]

Deaths[edit]

  • Estella Leopold, paleobotanist and conservation paleontologist passes on February 25, 2024 at 97. Leopold's work as a conservationist included taking legal action to help save the Florissant Fossil Beds in Colorado, and fighting pollution. She was the daughter of Aldo Leopold.[78]

References[edit]

  1. ^ Ernst, A.; Vachard, D.; Rodríguez, S. (2024). "Palaeoecology of calcified microfossils from the Lower Devonian (Pragian-Emsian) of Sierra Morena (SW Spain)". Facies. 70 (2). 6. Bibcode:2024Faci...70....6E. doi:10.1007/s10347-024-00680-3.
  2. ^ Bucur, I. I.; Del Piero, N.; Martini, R. (2024). "Clypeina? pamelareidae n. sp., a new dasycladalean alga from the Upper Triassic of Lime Peak (Yukon, Canada)". Micropaleontology. 70 (3): 253–262. doi:10.47894/mpal.70.3.04.
  3. ^ LoDuca, S. T. (2024). "Reinterpretation of Voronocladus from the Silurian of Ukraine as a bryopsidalean alga (Chlorophyta): The outlines of a major early Paleozoic macroalgal radiation begin to come into focus". Review of Palaeobotany and Palynology. 322. 105064. Bibcode:2024RPaPa.32205064L. doi:10.1016/j.revpalbo.2024.105064. S2CID 267155829.
  4. ^ Trabelsi, K.; Sames, B.; Martín-Closas, C. (2024). "First occurrence of family Clavatoraceae (fossil Charophyta) in the Middle Jurassic (Bathonian) of France". Papers in Palaeontology. 10 (2). e1548. Bibcode:2024PPal...10E1548T. doi:10.1002/spp2.1548.
  5. ^ Cariglino, B.; Zavattieri, A. M.; Lara, M. B. (2024). "A fertile spike moss (Selaginellites argentinensis sp. nov.) with in situ spores from the Triassic of Argentina: first fossil record of a Selaginellaceae lycophyte for South America". International Journal of Plant Sciences. doi:10.1086/730196. S2CID 268100804.
  6. ^ Li, C.; Moran, R. C.; Wang, Y.; Li, Y.; Ma, J. (2024). "A New Fossil of Cystodium (Cystodiaceae) from the mid-Cretaceous Myanmar amber". Cretaceous Research. 160. 105882. Bibcode:2024CrRes.16005882L. doi:10.1016/j.cretres.2024.105882.
  7. ^ Guo, Y.; Zhou, Y.; Pšenička, J.; Bek, J.; Votočková Frojdová, J.; Feng, Z. (2024). "Henanotheca qingyunensis sp. nov., a filicalean fern from the Lopingian of Southwest China". Palaeontographica Abteilung B. 305 (5–6): 193–210. doi:10.1127/palb/2024/0082. S2CID 267118129.
  8. ^ D'Antonio, M. P.; Hotton, C. L.; Smith, S. Y.; Crane, P. R.; Herrera, F. (2024). "Reconstruction of an enigmatic Pennsylvanian cone reveals a relationship to Sphenophyllales". American Journal of Botany. doi:10.1002/ajb2.16321. PMID 38659272.
  9. ^ Kundu, S.; Hazra, T.; Chakraborty, T.; Bera, S.; Taral, S.; Khan, M. A. (2023). "First Cenozoic macrofossil record of Polypodiaceae from India, and its biogeographic implications". International Journal of Plant Sciences. 185 (1): 71–88. doi:10.1086/727457. S2CID 260996816.
  10. ^ Ramírez-Barahona, S. (2024). "Incorporating fossils into the joint inference of phylogeny and biogeography of the tree fern order Cyatheales". Evolution. doi:10.1093/evolut/qpae034. PMID 38437579.
  11. ^ Machado, M. A.; Yañez, A.; Passalia, M. G.; Santonja, C.; Vera, E. I.; Suriano, J.; Bechis, F. (2024). "Pteridium (Dennstaedtiaceae) from Miocene of Patagonia (Río Negro, Argentina): the southernmost evidence of bracken fern in South America". Historical Biology: An International Journal of Paleobiology: 1–16. doi:10.1080/08912963.2024.2324442.
  12. ^ Lozano-Carmona, D. E.; Velasco-de León, M. P.; Jiménez-Rentería, J. (2024). "Reproductive organs of Early Jurassic Bennettitales from the collection of the Community Geological Museum of Rosario Nuevo "Ing. Jorge Jiménez Rentería", Oaxaca, Mexico". Paleontología Mexicana. 13 (1): 17–33.
  13. ^ Velasco de León, M. P.; Ortiz Martínez, E. L.; Flores Barragan, M. A.; Guzmán Madrid, D. S.; Martínez Martinez, P. C. (2024). "New records of Bennettitales and associated flora from the Jurassic of the Cualac Formation, Mexico". Palaeontologia Electronica. 27 (1). 27.1.a14. doi:10.26879/1293.
  14. ^ Sokolova, A. B.; Zavialova, N. E.; Moiseeva, M. G.; Kodrul, T. M. (2024). "The New Genus Amurodendron (Cupressaceae s.l.) from the Paleocene Boguchan Flora of the Amur Region (Russian Far East)". Paleontological Journal. 57 (10): 1188–1211. doi:10.1134/S0031030123100052. S2CID 267538529.
  15. ^ a b Vanner, M. R.; Conran, J. G.; Larcombe, M. J.; Lee, D. E. (2024). "Mid-Cretaceous wood of Waihere Bay, Pitt Island, Chatham Islands, New Zealand". IAWA Journal: 1–25. doi:10.1163/22941932-bja10149. S2CID 267535911.
  16. ^ a b c d e Kowalski, R.; Tietz, O.; Worobiec, E.; Worobiec, G. (2024). "New floras from the Tetta Clay Pit, Upper Lusatia, late Oligocene–Early Miocene, Germany" (PDF). Annales Societatis Geologorum Poloniae. 94 (1): 19–59. doi:10.14241/asgp.2024.01.
  17. ^ Li, Y.; Gee, C. T.; Tan, Z.-Z.; Zhu, Y.-B.; Yi, T.-M.; Li, C.-S. (2024). "Exceptionally well-preserved seed cones of a new fossil species of hemlock, Tsuga weichangensis sp. nov. (Pinaceae), from the Lower Miocene of Hebei Province, North China". Journal of Systematics and Evolution. 62: 164–180. doi:10.1111/jse.12952. S2CID 257368511.
  18. ^ Conceição, D. M.; Gobo, W. V.; Batista, M. E. P.; Oliveira, N. C.; Mastroberti, A. A.; Iannuzzi, R.; Bamford, M. K.; Kunzmann, L. (2024). "Expanding the diversity of conifer xyloflora from Early Cretaceous Crato Fossil Lagerstätte, Brazil". Review of Palaeobotany and Palynology. 322. 105061. Bibcode:2024RPaPa.32205061D. doi:10.1016/j.revpalbo.2024.105061. S2CID 267118634.
  19. ^ a b van Konijnenburg-van Cittert, J. H. A.; Schmeißner, S.; Dütsch, G.; Kustatscher, E.; Pott, C. (2024). "Plant macrofossils from the Rhaetian of Einberg near Coburg (Bavaria, Germany). Part 3. Conifers, incertae sedis and general discussion". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 310 (3): 251–282. doi:10.1127/njgpa/2023/1182.
  20. ^ Shi, X.; Yu, J.; Sun, Y.; Xu, Z.; Li, H. (2024). "A Novel Gymnosperm Wood from the Lopingian (Late Permian) in Zhangzi, Shanxi, North China and Its Paleoecological and Paleogeographic Implications". Journal of Earth Science. 35 (1): 167–176. Bibcode:2024JEaSc..35..167S. doi:10.1007/s12583-021-1510-3. S2CID 267696785.
  21. ^ Xie, A.; Gee, C. T.; Griebeler, E. M. (2023). "Modelling height–diameter relationships in living Araucaria (Araucariaceae) trees to reconstruct ancient araucarian conifer height". Palaeontology. 67 (2). e12693. doi:10.1111/pala.12693.
  22. ^ Ali, A.; Roy, K.; Mukherjee, B.; Bera, S.; Khan, M. A. (2024). "A new permineralized Corypha-type coryphoid palm stem from K-Pg of India: Anatomy, systematics, saprophytic fungi, and paleoecology". Turkish Journal of Botany. 48 (2): 105–119. doi:10.55730/1300-008X.2799.
  23. ^ Mahato, S.; Khan, M. A. (2024). "The First Fossil Record of Coryphoid Palm from Siwalik Strata (Middle Miocene) of Darjeeling Foothills of Eastern Himalaya". Paleontological Journal. 57 (3 supplement): S268–S284. doi:10.1134/S003103012360004X.
  24. ^ Kumar, S.; Su, T.; Spicer, R. A.; Khan, M. A. (2024). "The earliest fossil evidence of spiny feather (pinnate-leaved) palms from the K-Pg of Gondwana". Palaeontologia Electronica. 27 (1). 27.1.a12. doi:10.26879/1273.
  25. ^ a b Herrera, F.; Manchester, S. R. (2024). "Earliest Dioscorea fruits (Dioscoreaceae) from North America". International Journal of Plant Sciences. doi:10.1086/729607. S2CID 267284371.
  26. ^ a b Ramos, R. S.; Via do Pico, G. M.; Brea, M.; Kröhling, D. M (2024). "New fossil woods (upper Pleistocene) from the lower-middle Uruguay river basin (South America) reveal the past distribution of Aspidosperma (Apocynaceae)". Quaternary International. doi:10.1016/j.quaint.2024.03.004.
  27. ^ Hernández-Damián, A. L.; Rubalcava-Knoth, M. A.; Cevallos-Ferriz, S. R. S. (2024). "A new extinct member of the resin producer group of the Mexican amber: Hymenaeaphyllum mirandae n. gen. n. sp. (Detarioideae-Leguminosae)". Palaeoworld. doi:10.1016/j.palwor.2024.04.004.
  28. ^ Zhao, Y.-S.; Wang, T.-X.; Jia, L.-B.; Song, A.; Huang, J.; Su, T. (2024). "First fossil pod of Mezoneuron (Caesalpinioideae, Fabaceae) in Asia". Review of Palaeobotany and Palynology. 325. 105111. doi:10.1016/j.revpalbo.2024.105111.
  29. ^ a b c Manchester, S. R.; Wilson, R.; Liu, Y.; Basinger, J. F. (2024). "Arctic walnuts! Nuts of Juglans (Juglandaceae) from the middle Eocene of Axel Heiberg Island, Northern Canada". International Journal of Plant Sciences. doi:10.1086/730541.
  30. ^ Stults, D. Z.; Hermsen, E.; Starnes, J. E. (2024). "Fossil seeds of Passiflora L.: An Oligocene record of a new species and a Pleistocene record of a modern species from the Gulf of Mexico Coastal Plain". Review of Palaeobotany and Palynology. 324. 105093. Bibcode:2024RPaPa.32405093S. doi:10.1016/j.revpalbo.2024.105093.
  31. ^ a b c Ayala-Usma, D. A.; Lozano-Gutiérrez, R.; Orejuela, C.; Pérez-Ángel, L. C.; Montes, C.; González-Arango, C. (2024). "Exceptionally preserved subfossil woods from late Pleistocene volcanic deposits from the Northern Andes of Colombia". Review of Palaeobotany and Palynology. 324. 105090. Bibcode:2024RPaPa.32405090A. doi:10.1016/j.revpalbo.2024.105090.
  32. ^ Woodcock, D. W. (2024). "Wood of Qualea from the Piedra Chamana in-situ fossil forest (late Middle Eocene, Peru) and the comparative wood anatomy of Vochysiaceae and Myrtaceae". IAWA Journal: 1–20. doi:10.1163/22941932-bja10152. S2CID 268015193.
  33. ^ Akkemik, Ü.; Toprak, Ö. (2024). "A new fossil wood species of Ziziphus from the Middle Miocene of Türkiye and its palaeoenvironmental evaluation". Turkish Journal of Botany. 48 (2): 91–104. doi:10.55730/1300-008X.2798.
  34. ^ Wilf, P.; González, C. C.; Gandolfo, M. A.; Zamaloa, M. C. (2024). "Putative Celtis leaves from Eocene Patagonia are allied with Asian Anacardiaceae". Ameghiniana. 61 (2): 73–92. doi:10.5710/AMGH.21.02.2024.3586.
  35. ^ Mejia-Roldán, A. J.; González-Barba, G.; Rodríguez-Reyes, O.; Estrada-Ruiz, E. (2024). "A new genus of Anacardiaceae based on wood from the Tepetate Formation (upper Eocene) of Baja California Sur, Mexico". Bulletin of Geosciences. 99 (1): 73–83. doi:10.3140/bull.geosci.1892.
  36. ^ Xu, S.-L.; Maslova, N.; Kodrul, T.; Zdravchev, N.; Kachkina, V.; Liu, X.-Y.; Wu, X.-K.; Jin, J.-H. (2024). "Structurally Preserved Liquidambar Infructescences, Associated Pollen, and Leaves from the Late Oligocene of the Nanning Basin, South China". Plants. 13 (2). 275. doi:10.3390/plants13020275. PMC 10819801. PMID 38256828.
  37. ^ a b c Friis, E. M.; Crane, P. R.; Pedersen, K. R.; Marone, F. (2024). "Cretaceous chloranthoids: early prominence, extinct diversity and missing links". Annals of Botany. 133 (2): 225–260. doi:10.1093/aob/mcad137. PMC 11005782. PMID 38597914.
  38. ^ Zhang, R.; Huang, L.-L.; Li, S.-F.; Su, T.; Oskolski, A. A. (2024). "Fossil woods of Cryptocarya (Lauraceae) from the middle Miocene of Southwest China". Review of Palaeobotany and Palynology. 324. 105096. Bibcode:2024RPaPa.32405096Z. doi:10.1016/j.revpalbo.2024.105096.
  39. ^ a b Beurel, S.; Bachelier, J. B.; Schmidt, A. R.; Sadowski, E.-M. (2024). "Novel three-dimensional reconstructions of presumed Phylica (Rhamnaceae) from Cretaceous amber suggest Lauralean affinities". Nature Plants. 10 (2): 223–227. Bibcode:2024NatPl..10..223B. doi:10.1038/s41477-023-01592-w. PMID 38278948. S2CID 267267851.
  40. ^ Oskolski, A. A.; Morris, B. B.; Severova, E. E.; Sokoloff, D. D. (2024). "Flowers from Myanmar amber confirm the Cretaceous age of Rhamnaceae but not of the extant genus Phylica". Nature Plants. 10 (2): 219–222. Bibcode:2024NatPl..10..219O. doi:10.1038/s41477-023-01591-x. PMID 38278949. S2CID 267267981.
  41. ^ Rubalcava-Knoth, M. A.; Cevallos-Ferriz, S. R. S. (2024). "Trilobated Lauraceous leaves from the Upper Cretaceous Olmos Formation, Coahuila, Northern Mexico". Cretaceous Research. 158. 105820. Bibcode:2024CrRes.15805820R. doi:10.1016/j.cretres.2023.105820. S2CID 266968247.
  42. ^ Beurel, S.; Bachelier, J. B.; Munzinger, J.; Shao, F.; Hammel, J. U.; Shi, G.; Sadowski, E.-M. (2024). "First flower inclusion and fossil evidence of Cryptocarya (Laurales, Lauraceae) from Miocene amber of Zhangpu (China)". Fossil Record. 27 (1): 1–11. Bibcode:2024FossR..27....1B. doi:10.3897/fr.27.109621.
  43. ^ Chen, X.-Y.; Zhang, H.-C.; Yang, J.-Y. (2024). "A new fossil species of Callipteris (Callipteridae) in the Early Permian from the Xishan Area in Beijing, North China". Phytotaxa. 641 (4): 295–300. doi:10.11646/phytotaxa.641.4.6.
  44. ^ a b c Šimůnek, Z. (2024). "Leaf cuticular analysis of the upper Pennsylvanian and lower Cisuralian (Carboniferous – Permian) species of Cordaites Unger from the Bohemian Massif, Czech Republic". Palaeontographica Abteilung B. 305 (5–6): 121–191. doi:10.1127/palb/2024/0083.
  45. ^ Wan, M.; Li, D.; Wan, S.; Yang, W.; Zhou, W.; Wang, K.; Jiang, K.; Wang, J. (2024). "Frond characteristics of Cyrillopteris (ex. Odontopteris) orbicularis (Halle) comb. et emend. nov.: New evidence from the Permian Upper Shihezi (Upper Shihhotse) Formation of North China". Review of Palaeobotany and Palynology. 324. 105092. Bibcode:2024RPaPa.32405092W. doi:10.1016/j.revpalbo.2024.105092.
  46. ^ Sun, Y.; Deng, S.; Lu, Y.; Fan, R.; Ma, X.; Lyu, D. (2024). "The first record of the Gondwanan seed fern Dicroidium Gothan in Laurasia". Review of Palaeobotany and Palynology. 105114. doi:10.1016/j.revpalbo.2024.105114.
  47. ^ Juárez-Martínez, C.; Córdova-Tabares, V. M.; Estrada-Ruiz, E. (2024). "A new fossil species of a liverwort of the Frullania genus (Frullaniaceae, Marchantiophyta) from the Miocene amber of Simojovel de Allende, Chiapas, Mexico". Journal of South American Earth Sciences. 137. 104858. Bibcode:2024JSAES.13704858J. doi:10.1016/j.jsames.2024.104858. S2CID 268186677.
  48. ^ a b Shi, G.; Friis, E. M.; Pedersen, K. R.; Fu, Q.; Crane, P. R. (2024). "A new Harrisiothecium pollen organ from the Upper Triassic of South Central China". Review of Palaeobotany and Palynology. 323. 105079. Bibcode:2024RPaPa.32305079S. doi:10.1016/j.revpalbo.2024.105079. S2CID 267676131.
  49. ^ Mamontov, Y. S.; Atwood, J. J.; Ignatov, M. S.; Vasilenko, D. V; Legalov, A. A.; Perkovsky, E. E. (2024). "Hepatics from Rovno amber (Ukraine). 12. Jubula polessica sp. nov". Ecologica Montenegrina. 73: 1–10. doi:10.37828/em.2024.73.1.
  50. ^ Jin, P.; Zhang, M.; Du, B.; Zhang, J.; Sun, B. (2024). "A New Gnetalean Macrofossil from the Lower Cretaceous of the Laiyang Basin, eastern China". Plant Diversity. doi:10.1016/j.pld.2024.03.002.
  51. ^ Mamontov, Y. S.; Ignatov, M. S.; Vasilenko, D. V.; Perkovsky, E. E. (2024). "Hepatics from Rovno amber (Ukraine): Leptoscyphus davidii sp. nov". The Bryologist. 127 (1): 88–94. doi:10.1639/0007-2745-127.1.088. S2CID 267644428.
  52. ^ Qin, Y.-F.; He, X.-Y.; Hilton, J.; Wang, S.-J.; Dai, J.-Q. (2024). "Panxianopteris taeniopteroides gen. et sp. nov., an anatomically preserved taeniopterid leaf from the upper Permian of Guizhou Province, China". Review of Palaeobotany and Palynology. 105117. doi:10.1016/j.revpalbo.2024.105117.
  53. ^ Jiang, K.; Wang, K.; Wang, J.; Wan, M. (2024). "Protocupressinoxylon baii sp. nov., a gymnospermous fossil trunk from the Upper Shihhotse Formation (Permian) of Yangquan City, Shanxi Province, North China". Review of Palaeobotany and Palynology. 325. 105110. doi:10.1016/j.revpalbo.2024.105110.
  54. ^ Nosova, N.; Fedyaevskiy, A.; Lyubarova, A. (2024). "New findings of gymnosperms in the Middle Jurassic of the East European platform". Review of Palaeobotany and Palynology. 324. 105095. Bibcode:2024RPaPa.32405095N. doi:10.1016/j.revpalbo.2024.105095.
  55. ^ Mamontov, Y. S.; Ignatov, M. S.; Vasilenko, D. V; Legalov, A. A.; Perkovsky, E. E. (2024). "Hepatics from Rovno amber (Ukraine). 11. Radula oblongifolia and R. tikhomirovae sp. nov". Ecologica Montenegrina. 72: 189–199. doi:10.37828/em.2024.72.18.
  56. ^ Gastaldo, R. A.; Gensel, P. G.; Glasspool, I. J.; Hinds, S. J.; King, O. A.; McLean, D.; Park, A. F.; Stimson, M. R.; Stonesifer, T. (2024). "Enigmatic fossil plants with three-dimensional, arborescent-growth architecture from the earliest Carboniferous of New Brunswick, Canada". Current Biology. 34 (4): 781–792.e3. Bibcode:2024CBio...34E.781G. doi:10.1016/j.cub.2024.01.011. PMID 38309270.
  57. ^ Durieux, T.; Decombeix, A.-L.; Harper, C.; Galtier, J. (2024). "Re-investigation of Stauroxylon beckii, a possible aneurophytalean progymnosperm from the Mississippian of France". International Journal of Plant Sciences: 000. doi:10.1086/729412. S2CID 267099585.
  58. ^ Coiro, M.; Seyfullah, L. J. (2024). "Disparity of cycad leaves dispels the living fossil metaphor". Communications Biology. 7 (1). 328. doi:10.1038/s42003-024-06024-9. PMC 10940627. PMID 38485767.
  59. ^ Zhang, B.; Xin, C.; Yang, D.; Jiao, Z.; Liu, S.; Di, G.; Zhao, H. (2024). "Numerical taxonomy and genus-species identification of Czekanowskiales in China based on machine learning". Palaeontologia Electronica. 27 (1). 27.1.a10. doi:10.26879/1357.
  60. ^ Coiro, M.; McLoughlin, S.; Steinthorsdottir, M.; Vajda, V.; Fabrikant, D.; Seyfullah, L. J. (2024). "Parallel evolution of angiosperm-like venation in Peltaspermales: a reinvestigation of Furcula". New Phytologist. doi:10.1111/nph.19726. PMID 38623034.
  61. ^ Naugolnykh, S. V.; Mitta, V. V. (2024). "A first record of possible caytonialean pteridosperms from the Upper Bajocian (Middle Jurassic) of Northern Caucasus, Russia". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 310 (2): 133–146. doi:10.1127/njgpa/2023/1174. S2CID 267557803.
  62. ^ Thakre, D.; Samant, B.; Mohabey, D. M.; Manchester, S. R.; Sangode, S. (2024). "Palynology of the uppermost Cretaceous to lowermost Paleocene Deccan volcanic associated sediments of the Mandla Lobe, central India". Palynology. 48 (2). 2288669. doi:10.1080/01916122.2023.2288669.
  63. ^ Balarino, M. L.; Gutiérrez, P. R.; Prevec, R.; Ruffo Rey, L.; Cariglino, B. (2024). "First palynological record for the Lebombo Basin, South Africa with implications for Guadalupian (middle Permian) palaeofloras and palaeoenvironments". Gondwana Research. 130: 100–115. Bibcode:2024GondR.130..100B. doi:10.1016/j.gr.2023.12.020. S2CID 267271195.
  64. ^ Benavente, C. A.; Irmis, R. B.; Pedernera, T. E.; Mancuso, A. C.; Mundil, R. (2024). "Triassic Gondwanan floral assemblages reflect paleogeography more than geologic time". Gondwana Research. 130: 140–157. Bibcode:2024GondR.130..140B. doi:10.1016/j.gr.2024.01.008. S2CID 267468814.
  65. ^ Vajda, V.; McLoughlin, S.; Slater, S. M.; Gustafsson, O.; Rasmusson, A. G. (2023). "The 'seed-fern' Lepidopteris mass-produced the abnormal pollen Ricciisporites during the end-Triassic biotic crisis". Palaeogeography, Palaeoclimatology, Palaeoecology. 627. 111723. Bibcode:2023PPP...62711723V. doi:10.1016/j.palaeo.2023.111723.
  66. ^ Zavialova, N. (2024). "Comment on "The 'seed-fern' Lepidopteris mass-produced the abnormal pollen Ricciisporites during the end-Triassic biotic crisis" by V. Vajda, S. McLoughlin, S. M. Slater, O. Gustafsson, and A. G. Rasmusson [Palaeogeography, Palaeoclimatology, Palaeoecology, 627 (2023), 111,723]". Review of Palaeobotany and Palynology. 322. 105065. Bibcode:2024RPaPa.32205065Z. doi:10.1016/j.revpalbo.2024.105065. S2CID 267072212.
  67. ^ Vajda, V.; McLoughlin, S.; Slater, S. M.; Gustafsson, O.; Rasmusson, A. G. (2024). "Confirmation that Antevsia zeilleri microsporangiate organs associated with latest Triassic Lepidopteris ottonis (Peltaspermales) leaves produced Cycadopites-Monosulcites-Chasmatosporites- and Ricciisporites-type monosulcate pollen". Palaeogeography, Palaeoclimatology, Palaeoecology. 640. 112111. Bibcode:2024PPP...64012111V. doi:10.1016/j.palaeo.2024.112111. S2CID 267992880.
  68. ^ Zhang, P.; Yang, M.; Lu, J.; Jiang, Z.; Zhou, K.; Xu, X.; Wang, L.; Wu, L.; Zhang, Y.; Chen, H.; Zhu, X.; Guo, Y.; Ye, H.; Shao, L.; Hilton, J. (2024). "Different wildfire types promoted two-step terrestrial plant community change across the Triassic-Jurassic transition". Frontiers in Ecology and Evolution. 12. 1329533. doi:10.3389/fevo.2024.1329533.
  69. ^ Bos, R.; Zheng, W.; Lindström, S.; Sanei, H.; Waajen, I.; Fendley, I. M.; Mather, T. A.; Wang, Y.; Rohovec, J.; Navrátil, T.; Sluijs, A.; van de Schootbrugge, B. (2024). "Climate-forced Hg-remobilization associated with fern mutagenesis in the aftermath of the end-Triassic extinction". Nature Communications. 15. 3596. doi:10.1038/s41467-024-47922-0. PMID 38678037.
  70. ^ Smith, V.; Hessler, A.; Moscardelli, L.; Bord, D.; Olariu, I.; Lorente, M. A.; Sivil, E.; Liu, X. (2024). "A late refugium for Classopollis in the Paleocene Lower Wilcox Group along the Texas Gulf Coast". Geology. 52 (4): 251–255. Bibcode:2024Geo....52..251S. doi:10.1130/G51772.1.
  71. ^ Pinaya, J. L. D.; Pitman, N. C. A.; Cruz, F. W.; Akabane, T. K.; Lopez, M. del C. S.; Pereira-Filho, A. J.; Grohman, C. H.; Reis, L. S.; Rodrigues, E. S. F.; Ceccantini, G. C. T.; De Oliveira, P. E. (2024). "Humid and cold forest connections in South America between the eastern Andes and the southern Atlantic coast during the LGM". Scientific Reports. 14 (1). 2080. Bibcode:2024NatSR..14.2080P. doi:10.1038/s41598-024-51763-8. PMC 10808232. PMID 38267489.
  72. ^ Coiro, M (2024). "Embracing uncertainty: The way forward in plant fossil phylogenetics". American Journal of Botany. 111 (2). e16282. doi:10.1002/ajb2.16282. PMID 38334302.
  73. ^ McElwain, J. C.; Matthaeus, W. J.; Barbosa, C.; Chondrogiannis, C.; O' Dea, K.; Jackson, B.; Knetge, A. B.; Kwasniewska, K.; Nair, R.; White, J. D.; Wilson, J. P.; Montañez, I. P.; Buckley, Y. M.; Belcher, C. M.; Nogué, S. (2024). "Functional traits of fossil plants". New Phytologist. 242 (2): 392–423. doi:10.1111/nph.19622. PMID 38409806.
  74. ^ Davies, N. S.; McMahon, W. J.; Berry, C. M. (2024). "Earth's earliest forest: fossilized trees and vegetation-induced sedimentary structures from the Middle Devonian (Eifelian) Hangman Sandstone Formation, Somerset and Devon, SW England". Journal of the Geological Society. 181 (4). doi:10.1144/jgs2023-204.
  75. ^ Molina-Solís, A.; Cleal, C. J.; Monnet, C.; Cascales-Miñana, B. (2024). "Macrofloral biostratigraphy reflects late Carboniferous vegetation dynamics in the Nord-Pas-de-Calais Coalfield, France". Papers in Palaeontology. 10 (2). e1551. doi:10.1002/spp2.1551.
  76. ^ Hua, F.; Shao, L.; Wang, X.; Jones, T. P.; Zhang, T.; Bond, D. P. G.; Yan, Z.; Hilton, J. (2024). "The impact of frequent wildfires during the Permian–Triassic transition: Floral change and terrestrial crisis in southwestern China". Palaeogeography, Palaeoclimatology, Palaeoecology. 641. 112129. Bibcode:2024PPP...64112129H. doi:10.1016/j.palaeo.2024.112129.
  77. ^ Gurung, K.; Field, K. J.; Batterman, S. A.; Poulton, S. W.; Mills, B. J. W. (2024). "Geographic range of plants drives long-term climate change". Nature Communications. 15 (1). 1805. Bibcode:2024NatCo..15.1805G. doi:10.1038/s41467-024-46105-1. PMC 10901853. PMID 38418475.
  78. ^ jones, K. (February 28, 2024). "Estella Bergere Leopold, environmentalist and daughter of Aldo Leopold, dies at 97".